Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T13:11:29.107Z Has data issue: false hasContentIssue false

Low Temperature Plasma Etching of Copper for Minimizing Size Effects in sub-100 nm Features

Published online by Cambridge University Press:  01 February 2011

Nagraj S Kulkarni
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Science & Technology, 1 Bethel Valley Road, P.O. Box 2008, MS-6063, Oak Ridge, TN, 37831-6063, United States
Prabhakar Tamirisa
Affiliation:
[email protected], Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 311 Ferst Drive, N.W., Atlanta, Georgia, 30332-0100, United States
Galit Levitin
Affiliation:
[email protected], Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 311 Ferst Drive, N.W., Atlanta, Georgia, 30332-0100, United States
Richard J Kasica
Affiliation:
[email protected], Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
Dennis W Hess
Affiliation:
[email protected], Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, 311 Ferst Drive, N.W., Atlanta, Georgia, 30332-0100, United States
Get access

Abstract

A low temperature plasma etching process for patterning copper interconnects is proposed as a solution to the size effect issue in the resistivity of copper. Key features of this etching process based on a previous thermochemical analysis of the Cu-Cl-H system are discussed. Potential benefits of a subtractive etching scheme based on this process in comparison with the damascene scheme for copper-based interconnect processing in sub-100 nm features are presented in the context of the ITRS roadmap. Preliminary experimental work on plasma etching of Cu thin films using the proposed process is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1 Steinbruchel, C., Appl. Surf. Sci. 91, 139 (1995).Google Scholar
2 Rosenberg, R., Edelstein, D., Hu, C.-K. and Rodbell, K., Ann. Rev. Mater. Sci. 30, 229 (2000).Google Scholar
3 Steinhögl, W., Schindler, G. and Engelhardt, M., Semiconductor Intl. 5, 34 (2005).Google Scholar
4 Geffken, R. M., Sol. State Tech. 49, March (2006).Google Scholar
5 Zhang, W., Brongersma, S. H., Clarysse, T., Terzieva, V., Rosseel, E., Vandervorst, W., and Maex, K., J. Vac. Sci. Technol. B 22, 1830 (2004).Google Scholar
6 Marom, H., Ritterband, M. and Eizenberg, M., Thin Solid Films, (2006) (in press).Google Scholar
7 Wu, W., Ernur, D., Brongersma, S. H.,Hove, M. Van and Maex, K., Microelectron. Eng. 76, 190 (2004).Google Scholar
8 Zhang, W., Brongersma, S. H., Heylen, N., Beyer, G., Vandervorst, W., and Maex, K., J. Electrochem. Soc. 152, C832 (2005).Google Scholar
9 Steinhögl, W., Steinlesberger, G., Perrin, M., Scheinbacher, G., Schindler, G., Traving, M., and Engelhardt, M., Microelectron. Eng. 82, 266 (2005).Google Scholar
10 Mallikarjunan, A., Sharma, S. and Murarka, S. P., Electrochem. Sol. State Lett. 3, 437 (2000).Google Scholar
11 Gosset, L. G., Farcy, A., Pontcharra, J. de, Lyan, Ph., Daamen, R., Verheijden, G. J. A. M., Arnal, V., Gaillard, F., Bouchu, D., Bancken, P. H. L., Vandeweyer, T., Michelon, J., Hoang, V. N., Hoofman, R. J. O. M. and Torres, J., Microelectron. Eng. 82, 321 (2005).Google Scholar
12 Zschech, E., Meyer, M. A. and Langer, E., Mat. Res. Soc. Symp. Proc. 812, F7.5.1 (2004).Google Scholar
13 Kulkarni, N. S. and DeHoff, R. T., J. Electrochem. Soc. 149, G620 (2002).Google Scholar
14 Sesselmann, W. and Chuang, T.J., Surf. Sci. 176, 32 & 67 (1986).Google Scholar
15 Thompson, C., Annu. Rev. Mater. Sci. 30, 159 (2000).Google Scholar
16 Haber, J., Machej, T., Ungier, L., and Ziolkowski, J., J. Sol. State Chem. 25, 207 (1978).Google Scholar
17 Battistoni, C., Mattogno, G. and Paparazzo, E., Inorg. Chim. Acta 102, 1 (1985).Google Scholar