Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:02:35.076Z Has data issue: false hasContentIssue false

Low Temperature GaAs Growth on GaAs and Si with Metal-Organic Molecular Beam Epitaxy Assisted by Hydrogen Plasma

Published online by Cambridge University Press:  26 February 2011

Ikuo Suemune
Affiliation:
Faculty of Engineering, Hiroshima University, Shitami, Saijocho, Higashihiroshima, 724 Japan
Yasuhiro Kunitsugu
Affiliation:
Faculty of Engineering, Hiroshima University, Shitami, Saijocho, Higashihiroshima, 724 Japan
Yoshimitsu Tanaka
Affiliation:
Research and Development Laboratories, Matsushita Electric Works Ltd., Kadoma, Osaka, 571 Japan
YAsuo Kan
Affiliation:
Faculty of Engineering, Hiroshima University, Shitami, Saijocho, Higashihiroshima, 724 Japan
Masamichi Yamanishi
Affiliation:
Faculty of Engineering, Hiroshima University, Shitami, Saijocho, Higashihiroshima, 724 Japan
Get access

Abstract

New low-temperature cleaning and growth processes are presented using hydrogen plasma. Cleaning of GaAs and Si surfaces are possible above 200°C and 300°C, respectively. Single-domain GaAs thin films are successfully grown on Si at 400°C using metal-organic compounds for both Ga and As. Selective growth of GaAs is demonstrated at 400°C on a Si surface partially covered withSiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 for example, Shaw, D.W, Mat. Res. Soc. Symp. Proc. 91, 15 (1987).CrossRefGoogle Scholar
2 Koyanagi, M., Takata, H., Maemoto, T., and Hirose, M., Optoelectronics- Devices and Technology 3 (1), 8398 (1988).Google Scholar
3 Wright, S. and Kroemer, H., Appl. Phys. Lett. 36, 210 (1980).CrossRefGoogle Scholar
4 Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).CrossRefGoogle Scholar
5 Tanaka, Y., Kunitsugu, Y., Suemune, I., Holda, Y., Kan, Y. and Yamanishi, M., J. Appl. Phys. 64, 2778(1988).CrossRefGoogle Scholar
6 Suemune, I., Kunitsugu, Y., Tanaka, Y., Kan, Y. and Yamanishi, M., Appl. Phys. Lett. (1988) (in press).Google Scholar
7 Sakamoto, T. and Hashiguchi, G., Jpn. J. Appl. Phys. 25, L78 (1986).CrossRefGoogle Scholar
8 Kunitsugu, Y., Suemune, I., Tanaka, Y., Kan, Y. and Yamanishi, M., J. Cryst. Growth.(1988) (in press).Google Scholar
9 Pauling, L., The Nature of The Chemical Band, Cornell University Press (1960) Chapt. 3.Google Scholar
10 Nanishi, Y. and Kondo, N., Institute of Electronics, Information & Communication Engineers Technical Report No. 87, 77 (1987) (in Japanese).Google Scholar
11 Hariu, T., Matsushita, K., Komatsu, Y., Shibuya, S., Igarashi, S. and Shibata, Y., Inst. Phys. Conf. Ser. ed. Stillman, G. E., 65, 141 (The Institute of Physics, Bristol and London, 1982).Google Scholar
12 Asakawa, K. and Sugata, S., J. Vac. Sci. Techitol. A4, 677 (1986).CrossRefGoogle Scholar
13 Kunitsugu, Y., Suemune, I., Tanaka, Y., Kan, Y. and Yamanishi, M., Proc. 1988 Symp. on Dry Process (Tokyo, 1988) pp. 139–144.Google Scholar
14 Kawabe, M., Ueda, T. and Takasugi, H., Jpn. J. Appl. Phys. 26, L114 (1987).CrossRefGoogle Scholar
15 Yokoyama, S., Oogi, S., Yui, D. and Kawabe, M., Workbook of Fifth Int. Conf. on MBE (Sapporo, 1988) p. 37.Google Scholar
16 Tokumitsu, E., Kuou, Y., Konagai, M., and Takahashi, K., J. Appl. Phys. 55 (8), 3163 (1984).CrossRefGoogle Scholar
17 Matsuo, S. and Kiuchi, M., Jpn. J. Appl. Phys. 22, L210 (1983).CrossRefGoogle Scholar