Article contents
Low Temperature Direct Metal Bonding by Self Assembled Monolayers
Published online by Cambridge University Press: 01 February 2011
Abstract
Elevated bonding temperature for interconnection deteriorates the reliability of both the device and the interconnect; hence the imperative for developing low temperature bonding methods. This study investigates the feasibility of using self-assembled monolayers (SAMs) to assist direct gold-gold bonding. This involves a simple molecular self-assembly process whereby a monolayer of alkyl chains with a sulfur end group is attached to the gold surface prior to thermocompression bonding. Using this method, we have achieved gold to gold bonding at a bonding temperature below 100°C, a significant reduction compared to the conventional bonding temperatures of above 150 °C. We attribute this temperature reduction to two properties of SAMs - (1) surface passivation of the Au surface that precludes adsorption of surface contaminants, and (2) The easy displacement of SAMs through thermal desorption just before bonding occurs. This SAMs-assisted bonding mechanism is supported by X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) results.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
REFERENCES
- 1
- Cited by