Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T03:24:36.819Z Has data issue: false hasContentIssue false

Low Temperature Annealing of Rh (111) Surfaces

Published online by Cambridge University Press:  15 February 2011

Frank Tsui
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, [email protected]
Joanne Wellman
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120
Junhao Xu
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120
Ctirad Uher
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120
Roy Clarke
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120
Get access

Abstract

We have studied smoothing kinetics of Rh (111) surfaces during low temperature annealing using in-situ real-time reflection high energy electron diffraction and scanning tunneling microscopy. The initial surface features were produced by low temperature homoepitaxial growth of Rh (111). Two types of surfaces were studied, surfaces with two-dimensional (2D) islands at submonolayer coverages, and those with 3D multilayered features. 2D islands coarsen rapidly at the onset of the anneal. 3D features are more stable initially. Their annealing process exhibits a distinct transition from an initial slow coarsening, characterized by a nearly linear growth of lateral size, to a rapid flattening. The activation energy for the transition is ˜ 0.6 eV. The observed behavior indicates that the smoothing kinetics in the low temperature regime is limited by adatom detachment from the step-edges, and that the fast process for the 3D features is made possible by the formation of a network of “chain-like” structures which provide new pathways for diffusion thus overcoming the slow detachment kinetics. These effects determine the low temperature stability of the non-equilibrium epitaxial morphologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zuo, J. K. and Wendelken, J. F., Phys. Rev. Lett. 70, 1662 (1993).Google Scholar
2. Morgenstern, K., Rosenfeld, G., Poelsema, B., and Comsa, G., Phys. Rev. Lett. 74, 2058 (1995).Google Scholar
3. Wen, J. M., Chang, S. L., Burnett, J. W., Evans, J. E., and Thiel, P. A., Phys. Rev. Lett. 73, 2591 (1994).Google Scholar
4. Morgenstern, K., Rosenfeld, G., and Comsa, G., Phys. Rev. Lett. 76, 2113 (1996).Google Scholar
5. Herring, C., in Structure and Properties of Solid Surfaces, ed. Gomer, R. and Smith, C. S., (University of Chicago Press, Chicago, 1952), p. 5.Google Scholar
6. Cabrera, N., in Symposium on Properties of Surfaces, (American Society of Testing and Materials, Philadelphia, 1963), p. 24.Google Scholar
7. Mullins, W. W., J. Appl. Phys. 28, 334 (1957); 30, 77 (1959).Google Scholar
8. Villain, J., Europhys. Lett. 2, 531 (1986).Google Scholar
9. Rettori, A. and Villain, J., J. Phys. (Paris) 49, 257 (1988).Google Scholar
10. Ozdemir, M. and Zangwill, A., Phys. Rev. B 42, 5013 (1990).Google Scholar
11. Johnson, M. D., Orme, C., Hunt, A. W., Graff, D., Sudijono, J. L., Sander, L. M., and Orr, B. G., Phys. Rev. Lett. 72, 116 (1994); C. Orme, M. D. Johnson, J. L. Sudijono, K. T. Leung, and B. G. Orr, Appl. Phys. Lett. 64, 860 (1994).Google Scholar
12. Ernst, H. J., Fabre, E., Folkerts, R., and Lapujoulade, J. L., Phys. Rev. Lett. 72, 112 (1994); J. Vac. Sci. Tech. A 12, 1 (1994).Google Scholar
13. Nostrand, J. van, Chey, S. J., Hasan, M. A., Cahill, D. G., and Greene, J. E., Phys. Rev. Lett. 74, 1127 (1995).Google Scholar
14. Stroscio, J. A., Pierce, D. T., Stiles, M. and Zangwill, A., Phys. Rev. Lett. 75, 4246 (1995).Google Scholar
15. Tsui, F., Wellman, J., Uher, C., and Clarke, R., Phys. Rev. Lett. 76, 3164 (1996); in Evolution of Epitaxial Structure and Morphology, ed. A. Zangwill et al., MRS Symp. Proc. v. 339 (MRS, Pittsburgh, PA, 1996), p. 243.Google Scholar
16. Ehrlich, G. and Hudda, F. G., J. Chem. Phys. 44, 1039 (1966); R. L. Schwoebel, J. Appl. Phys. 40, 614 (1969).Google Scholar
17. Villain, J., J. Phys. I France 1, 19 (1991).Google Scholar