Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T11:18:08.393Z Has data issue: false hasContentIssue false

Low Frequency Admittance Measurements in the Quantum Hall Regime

Published online by Cambridge University Press:  19 November 2013

Carlos Hernández
Affiliation:
Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá D.C., Colombia.
Christophe Chaubet
Affiliation:
Laboratoire Charles Coulomb L2C, Université Montpellier II, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France.
Get access

Abstract

In this paper we present an ac-magneto-transport study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime, for frequencies in the range [100Hz, 1MHz]. We present an approach to understand admittance measurements based in the Landauer-Buttiker formalism for QHE edge channels and taking into account the capacitance and the topology of the cables connected to the contacts used in the measurements. Our model predicts an universal behavior with the a-dimensional parameter RH where RH is the 2 wires resistance of the 2DEG, C the capacitance cables and the angular frequency, in agreement with experiments. For a specific configuration, we measure the electrochemical capacitance of the quantum Hall edge channels as predicted by Christen and Büttiker.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Melcher, J., Warnecke, P., Hanke, R., IEEE Trans. Instrum. Meas., 42, 292294 (1993).CrossRefGoogle Scholar
Delahaye, F., Metrologia, 31, 367373 (1994).CrossRefGoogle Scholar
Ahlers, F. J., Jeanneret, B., Overney, F., Schurr, J. and Wood, B. M., Metrologia, 46, R1R11 (2009).CrossRefGoogle Scholar
Jeanneret, B. and Overney, F., IEEE Trans. Instrum. Meas., 56, 431434 (2007).Google Scholar
Schurr, J., Ahlers, F. J., Hein, G., Melcher, J., Pierz, K., Overney, F. and Wood, B. M., Metrologia, 43, 163173 (2006).CrossRefGoogle Scholar
Schurr, J., Ahlers, F. J., Hein, G. and Pierz, K., Metrologia, 44, 1523 (2007).CrossRefGoogle Scholar
Schurr, J., Kucera, J., Pierz, K. and Kibble, B. P., Metrologia 48, 47 (2011)CrossRefGoogle Scholar
Desrat, W., Maude, D.K., Rigal, L.B., Potemski, M., Portal, J.C., Eaves, L., Henini, M., Wasilewski, Z.R., Toropov, A., Hill, G. and Pate, M.A., Phys. Rev. B 62, 12990 (2000)Google Scholar
Büttiker, M., Phys, J.. Condens. Matter 5, 9361(1993)Google Scholar
Christen, T. and Büttiker, M., Phys. Rev. B 53, 2064 (1996)CrossRefGoogle Scholar
Büttiker, M., Prêtre, A. and Thomas, H., Phys. Rev. Lett. 70, 4114 (1993)Google Scholar
Melcher, J., Schurr, J., Delahaye, F. and Hartland, A., Phys. Rev. B 64, 127301 (2001)Google Scholar
Meziani, Y. M., Chaubet, C., Bonifacie, S., Raymond, A., Poirier, W., and Piquemal, F., J. Appl. Phys. 96, 404 (2004).CrossRefGoogle Scholar
Piquemal, F., Genev`es, G., Delahaye, F., Andr´e, J. P., Patillon, J. N., and Frijlink, P., IEEE Trans. Instrum. Meas. 42, 264 (1993).CrossRefGoogle Scholar
Hernández, C., Chaubet, C., Rev. Mex. Fis. 55, 432436 (2009).Google Scholar