Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T15:29:37.506Z Has data issue: false hasContentIssue false

Long-term Stability of Mixed Perovskites

Published online by Cambridge University Press:  16 June 2015

Prashant K Sarswat
Affiliation:
Department of Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112, USA
Michael L Free
Affiliation:
Department of Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112, USA
Get access

Abstract

Long term stability of mixed perovskite compounds is one of the important concerns for prolonged viability and economical use of perovskite based solar cells. Degradation in perovskite films mainly occurs due to exposure to moisture. Hence, a controlled atmospheric condition and lower humidity is preferred for device fabrication and use. Many different strategies such as use of thin and wide band gap semiconductor layer, improvement in pour filling of metal oxide film, and utilization of AgTFSI have been attempted to improve device stability. However, for long term durability, there is an urgent need to increase stability of parent perovskite layer, apart from use of protective layers. In this study we examined water resistant additive, structural modifications, and stoichiometric modification for enhanced film durability. These strategies and preliminary results are discussed in this report.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Science 338, 643 (2012).CrossRefGoogle Scholar
Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J., Energy & Environmental Science 6, 1739 (2013).Google Scholar
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-b., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y., Science 345, 542 (2014).CrossRefGoogle Scholar
Binetti, S., Acciarri, M., Le Donne, A., Morgano, M., Jestin, Y., International Journal of Photoenergy 2013, 6 (2013).CrossRefGoogle Scholar
Chung, I., Lee, B., He, J., Chang, R.P.H., Kanatzidis, M.G., Nature 485, 486 (2012).CrossRefGoogle Scholar
Niu, G., Li, W., Meng, F., Wang, L., Dong, H., Qiu, Y., Journal of Materials Chemistry A 2 705 (2014).CrossRefGoogle Scholar
Xu, B., Huang, J., Ågren, H., Kloo, L., Hagfeldt, A., Sun, L., ChemSusChem 7, 3252(2014)CrossRefGoogle Scholar
Wei, Z., Chen, H., Yan, K., Yang, S., Angewandte Chemie International Edition 126, 13455(2014).CrossRefGoogle Scholar
Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., Han, H., Science 345, 295 (2014).CrossRefGoogle Scholar
Kim, H.-S., Lee, J.-W., Yantara, N., Boix, P.P., Kulkarni, S.A., Mhaisalkar, S., Grätzel, M., Park, N.-G., Nano Letters 13, 2412 (2013).CrossRefGoogle Scholar
Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J., Nano Letters 14, 5561 (2014).CrossRefGoogle Scholar
Ishida, H., Ikeda, R., Nakamura, D., Physica Status Solidi (a) 70, K151K154 (1982).CrossRefGoogle Scholar
Kawamura, Y., Mashiyama, H., Hasebe, K., Journal of the Physical Society of Japan 71, 1694 (2002).CrossRefGoogle Scholar
Iliev, M.N., Abrashev, M.V., Lee, H.G., Popov, V.N., Sun, Y.Y., Thomsen, C., Meng, R.L., Chu, C.W., Physical Review B 57, 2872 (1998).CrossRefGoogle Scholar
Shim, S.-H., Kubo, A., Duffy, T.S., Earth and Planetary Science Letters 260, 166(2007).CrossRefGoogle Scholar
Li, S., Qiu, L., Shi, C., Chen, X., Yan, F., Advanced Materials 26, 1266 (2014).CrossRefGoogle Scholar