Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T11:36:04.815Z Has data issue: false hasContentIssue false

Localized and Propagating Surface Plasmon Resonance Sensors: A Study Using Carbohydrate Binding Protein

Published online by Cambridge University Press:  15 February 2011

Chanda Yonzon
Affiliation:
Department of Chemistry, Northwestern University Evanston, IL 60208, U.S.A
Richard P. Van Duyne
Affiliation:
Department of Chemistry, Northwestern University Evanston, IL 60208, U.S.A
Get access

Abstract

This work encompasses a comparative analysis of the properties of two optical biosensor platforms: (1) the propagating surface plasmon resonance (SPR) sensor based on a planar, thin film gold surface and (2) the localized surface plasmon resonance (LSPR) sensor based on surface confined Ag nanoparticles fabricated by nanosphere lithography. The binding of Concanavalin A (ConA) to mannose-functionalized self-assembled monolayers (SAMs) is chosen to illustrate the similarities and the differences of these sensors. A comprehensive set of non-specific binding studies demonstrate that the single transduction mechanism is due to the specific binding of ConA to the mannose-functionalized surface. Finally, an elementary (2x1) multiplexed version of a LSPR carbohydrate sensing chip to probe the simultaneous binding of ConA to mannose and galactose-functionalized SAMs is also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Ji, J.; Schanzle, J. A.; Tabacco, M. B. Anal. Chem. 2004, 76, 14111418.Google Scholar
(2) Ligler, F. S.; Taitt, C. R.; Shriver-Lake, L. C.; Sapsford, K. E.; Shubin, Y.; Golden, J. P. Anal. Bioanal. Chem. 2003, 377, 469477.Google Scholar
(3) Kohls, O.; Scheper, T. Sens. Actuators B 2000, 70, 121130.Google Scholar
(4) Yonzon, C. R.; Haynes, C. L.; Zhang, X.; Walsh, J. T.; Van Duyne, R. P. Anal. Chem. 2004, 76, 7885.Google Scholar
(5) Ho, H.; Leclerc, M. J. Am. Chem. Soc. 2004, 126, 13841387.Google Scholar
(6) Wiskur, S. L.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123, 1010910110.Google Scholar
(7) Bauer, G.; Hassmann, J.; Walter, H.; Haglmueller, J.; Mayer, C.; Schalkhammer, T. Nanotech. 2003, 12891311.Google Scholar
(8) Liedberg, B.; Nylander, C.; Lundstorm, I. Sens. Actuators B 1983, 4, 229304.Google Scholar
(9) Riboh, J. C.; Haes, A. J.; McFarland, A. D.; Yonzon, C. R.; Van Duyne, R. P. J. Phys. Chem. B 2003, 107, 17721780.Google Scholar
(10) Yonzon, C. R.; Zhang, X.; Van Duyne, R. P. Proc. SPIE 2003, 5224, 7885.Google Scholar
(11) McFarland, A. D.; Van Duyne, R. P. Nano Lett. 2003, 3, 10571062.Google Scholar
(12) Reather, H. Surface Polaritons on Smooth and Rough Surfaces and on Gratings; Springer-Verlag: Berlin, 1988.Google Scholar
(13) Garcia-Vidal, F. J.; Pendry, J. B. Phys. Rev. Lett. 1996, 77, 11631666.Google Scholar
(14) Jensen, T. R.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 1999, 103, 23942401.Google Scholar
(15) Haynes, C. L.; Van Duyne, R. P. J. Phys. Chem. B 2001, 105, 55995611.Google Scholar
(16) Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 109116.Google Scholar
(17) Houseman, B. T.; Gawalt, E. S.; Mrksich, M. Langmuir 2003, 19, 15221531.Google Scholar
(18) Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M. J.Phys.Chem 1994, 98, 563571.Google Scholar
(19) Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 1059610604.Google Scholar
(20) Smith, E. A.; Thomas, W. D.; Kiessling, L. L.; Corn, R. M. J. Am. Chem. Soc. 2003, 125, 61406148.Google Scholar
(21) Jung, L. S.; Campbell, C. T.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S. Langmuir 1998, 14, 56365648.Google Scholar
(22) Gupta, D.; Cho, M.; Cummings, R. D.; Brewer, C. F. Biochem. 1996, 35, 1523615243.Google Scholar
(23) Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; Van Duyne, R. P. J. Phys. Chem. B 2000, 104, 1054910556.Google Scholar