Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:28:25.659Z Has data issue: false hasContentIssue false

Lithium-ion Diffusion in Solid Electrolyte Interface (SEI) Predicted by Phase Field Model

Published online by Cambridge University Press:  11 February 2015

Pengjian Guan
Affiliation:
Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, U.S.A.
Lin Liu
Affiliation:
Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, U.S.A.
Get access

Abstract

Solid electrolyte interface (SEI) layer plays a key role in lithium-ion batteries’ degradation research. However, SEI layer microstructure prediction still needs further investigation, especially the lithium-ion diffusion in SEI layer considering its morphology evolution during the growth of SEI. Due to the unique advantage of avoiding explicitly tracking the interfaces with sharp composition gradients, a phase field model is developed to simulate the SEI formation and its morphology evolution that is regarded as a solidification process. Fick’s law and mass balance are applied to investigate lithium-ion concentration distribution and diffusion coefficients of different SEI layers (i.e., compact and porous SEI layers) predicted by the developed phase field model. The simulation results show lithium-ion diffusion coefficients between 298K and 318K are 1.34-1.87(10-16) m2/s and 1.73-2.18(10-12) m2/s for compact SEI and porous SEI layer, respectively. The developed model has great potential to be extended to three dimensional spaces for SEI layer spatial growth investigation and other interfaces with complex morphology evolution.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Arora, P., White, R. E. and Doyle, M., Journal of the Electrochemical Society, 145, 3647 (1998).CrossRefGoogle Scholar
Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F. and Riu, D., Journal of Power Sources, 241, 680 (2013).CrossRefGoogle Scholar
Paul, S., Diegelmann, C., Kabza, H. and Tillmetz, W., Journal of Power Sources, 239, 642 (2013).CrossRefGoogle Scholar
Cho, E., Mun, J., Chae, O. B., Kwon, O. M., Kim, H.-T., Ryu, J. H., Kim, Y. G. and Oh, S. M., Electrochemistry Communications, 22, 1 (2012).CrossRefGoogle Scholar
Abouimrane, A., Ding, J. and Davidson, I. J., Journal of Power Sources, 189, 693 (2009).CrossRefGoogle Scholar
Zhang, S. S. and Jow, T. R., Journal of Power Sources, 109, 458 (2002).CrossRefGoogle Scholar
Jana, M., Sil, A. and Ray, S., Journal of Physics and Chemistry of Solids, 75, 60 (2014).CrossRefGoogle Scholar
Virkar, A. V., Journal of Power Sources, 196, 5970 (2011).CrossRefGoogle Scholar
Verma, P. and Novák, P., Carbon, 50, 2599 (2012).CrossRefGoogle Scholar
Jannesari, H., Emami, M. D. and Ziegler, C., Journal of Power Sources, 196, 9654 (2011).CrossRefGoogle Scholar
Wang, F. M., Yu, M. H., Hsiao, Y. J., Tsai, Y., Hwang, B. J., Wang, Y. Y. and Wan, C. C., International Journal of Electrochemical Science, 6, 1014 (2011).Google Scholar
Tang, M. H.-M., Side Reactions in Lithium-Ion Batteries, in (2012).Google Scholar
Colclasure, A. M., Smith, K. A. and Kee, R. J., Electrochimica Acta, 58, 33 (2011).CrossRefGoogle Scholar
Srinivasan, R. and Carkhuff, B. G., Journal of Power Sources, 241, 560 (2013).CrossRefGoogle Scholar
Prasad, G. K. and Rahn, C. D., Journal of Power Sources, 232, 79 (2013).CrossRefGoogle Scholar
Kim, S.-P., , A. Duin, C. T. v. and Shenoy, V. B., Journal of Power Sources, 196, 8590 (2011).CrossRefGoogle Scholar
Yan, J., Xia, B.-J., Su, Y.-C., Zhou, X.-Z., Zhang, J. and Zhang, X.-G., Electrochimica Acta, 53, 7069 (2008).CrossRefGoogle Scholar
Edström, K., Herstedt, M. and Abraham, D. P., Journal of Power Sources, 153, 380 (2006).CrossRefGoogle Scholar
Peled, E., Golodnitsky, D. and Ardel, G., Journal of the Electrochemical Society, 144, L208 (1997).CrossRefGoogle Scholar
Guan, P., Lin, X. and Liu, L., ECS Transactions, 61, 29 (2014).CrossRefGoogle Scholar
Broussely, M., Herreyre, S., Biensan, P., Kasztejna, P., Nechev, K. and Staniewicz, R. J., Journal of Power Sources, 9798, 13 (2001).CrossRefGoogle Scholar
, G. Jie Deng, J. W., and Muller, Richard P., Journal of the Electrochemical Society, 160, A487 (2013).CrossRefGoogle Scholar
Han, B. C., Van der Ven, A., Morgan, D. and Ceder, G., Electrochimica Acta, 49, 4691 (2004).CrossRefGoogle Scholar
Borodin, O., Smith, G. D. and Fan, P., J Phys Chem B, 110, 22773 (2006).CrossRefGoogle Scholar
Tasaki, K.;, Goldberg, A.;, Lian, J.-J.;, Walker, M.;, Timmons, A.; and Harris, S. J.;, The Electrochemical Society, 156, A1019 (2009).CrossRefGoogle Scholar
Liu, L., Park, J., Lin, X., Sastry, A. M. and Lu, W., Journal of Power Sources, 268, 482 (2014).CrossRefGoogle Scholar
Nishida, T.;, Nishikawa, K.; and Fukunaka, Y., ECS transactions, 6, 1 (2008).CrossRefGoogle Scholar