Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:24:26.073Z Has data issue: false hasContentIssue false

Lithium-containing semiconductor crystals for radiation detection

Published online by Cambridge University Press:  12 November 2013

Ashley C. Stowe
Affiliation:
Y-12 National Security Complex, Oak Ridge, Tennessee, USA
Joe Cochran
Affiliation:
Y-12 National Security Complex, Oak Ridge, Tennessee, USA
Pijush Bhattacharya
Affiliation:
Fisk University, Nashville, Tennessee, USA
Eugene Tupitsyn
Affiliation:
Fisk University, Nashville, Tennessee, USA
Brenden Wiggins
Affiliation:
Fisk University, Nashville, Tennessee, USA
Michael Groza
Affiliation:
Fisk University, Nashville, Tennessee, USA
Arnold Burger
Affiliation:
Fisk University, Nashville, Tennessee, USA
Get access

Abstract

Semiconductor materials have shown promise as ionizing radiation detection devices; however, to be used as a neutron detector, these materials require the addition of a nucleus with a large neutron absorption cross section (such as 10B or 6Li) to capture thermal neutrons and convert them into directly detectable particles. A semiconducting material that contains the neutron absorber within its regular stoichiometry has the potential to be more efficient than a layered or heterogeneous device at transferring the kinetic energy of the charged particle into the semiconducting material. One class of materials that has shown promise is Li-containing AIBIIIXVI2 compounds such as LiGaTe2, LiGaSe2, and LiInSe2. These materials have band gaps (2-3.5 eV) appropriate for room-temperature detection of thermal neutrons and would be the first detection material that is simultaneously, exquisitely sensitive to thermal neutrons; is insensitive to gammas; and acts as a direct conversion device. A vacuum distillation process provided high-purity lithium metal for AIBIIIXVI2 synthesis. Single crystals of sufficient bulk resistivity (grown for LiGaSe2 and LiInSe2LiInSe2) showed a distinct photo response as well as a clear response to alpha particles. Additional radiation measurements indicated that a 6 mm x 7 mm x 1.33 mm crystal of LiInSe2 detected gamma rays, and despite being composed of natural abundance lithium, responded to thermal neutrons as well.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caruso, A. N., J. Phys.: Condens. Matter, 23, 443201 (2010).Google Scholar
McGregor, D. S., Hammig, M. D., Yang, Y. H., Gersch, H. K., Klann, R. T., Nuc. Instrum, Meth. Phys. Res. A, 500, 272 (2003).CrossRefGoogle Scholar
Bell, Z., Carpenter, D., Cristy, S., Lamberti, V., Burger, A., Woodfield, B., Niedermayr, T., Hau, I., Labov, S., Freidrich, S., West, W., Pohl, K., van den Berg, L., Phys. Stat. Sol C, 2, 1592 (2005).Google Scholar
Kosobutsky, A., Basalaev, Y., Poplavnoi, A., Phys. Status Solidi B 246, 364 (2009).CrossRefGoogle Scholar
Isaenko, L., Yelisseyev, A., Lobanov, S., Titov, A., Petrov, V., Zondy, J.-J., Krinitsin, P., Merkulov, A., Vedenyapin, V., Smirnova, A., J. Cryst. Res. Technol. 38, 379 (2003).CrossRefGoogle Scholar
Isaenko, L., Vasilyeva, I., Merkulov, A., Yelisseyev, A., Lobanov, S., J. Cryst. Growth 275, 217 (2005).CrossRefGoogle Scholar
Petrov, V., Yelisseyev, A., Isaenko, L., Lobanov, S., Titov, A., Zondy, J.-J., Appl. Phys. B 78, 543 (2004).CrossRefGoogle Scholar
Chen, W., Poullet, E., Burie, J., Boucher, D., Sigrist, M., Zondy, J.-J., Isaenko, L., Yelisseyev, A., Lobanov, S., Appl. Opt. 44, 4123 (2005).CrossRefGoogle Scholar
Zondy, J.-J., Vedenyapin, V., Yelisseyev, A., Lobanov, S., Isaenko, L., Petrov, V., Opt. Lett. 30, 2460 (2005).CrossRefGoogle Scholar
Isaenko, L., Krinitsin, P., Vedenyapin, V., Yelisseyev, A., Merkulov, A., Zondy, J.-J., Petrov, V., Cryst. Growth & Design 5, 1325 (2005).CrossRefGoogle Scholar
Balachninaite, O., Petravičiūtė, L., Maciulevičius, M., Sirutkaitis, V., Isaenko, L., Lobanov, S., Yelisseyev, A., Zondy, J.-J., Ultragarsas 60, 7 (2006).Google Scholar
Zondy, J.-J., Bielsa, F., Douillet, A., Hilico, L., Acef, O., Petrov, V., Yelisseyev, A., Isaenko, L., Krinitsin, P., Opt. Lett. 32, 1722 (2007).CrossRefGoogle Scholar
Reshak, A., Auluck, S., Kityk, I., Journal of Alloys and Compounds 473, 20 (2009).CrossRefGoogle Scholar
Reshak, A., Auluck, S., Kityk, I., Al-Douri, Y., Khenata, R., Bouhemadou, A., , A. Appl. Phys. A 94, 315 (2009).CrossRefGoogle Scholar
Eifler, A., Riede, V., Brückner, J., Weise, S., Krämer, V., Lippold, G., Schmitz, W., Bente, K., Grill, W., Jpn. J. Appl. Phys. 39 (Suppl. 39-1), 279 (2000).CrossRefGoogle Scholar
Leal-Gonzalez, J., Melibary, S., Smith, A., Acta Crystallogr. C 46, 2017 (1990).CrossRefGoogle Scholar
Kish, Z.Z., Loshchak, V.V., Peresh, E.Y., Semrad, E.E., Inorg. Mater. 25, 1658 (1989).Google Scholar
Kuriyama, K., Nozaki, T., J. Appl. Phys. 52, 6441 (1981).CrossRefGoogle Scholar
Stowe, A. C., Morrell, J. S., Bhattacharya, P., Tupitsyn, E., Burger, A.. Proc. Of SPIE, 8142, 81421H (2011).CrossRefGoogle Scholar
Tupitsyn, E., Bhattacharya, P., Rowe, E., Matei, L., Groza, M., Wiggins, B., Burger, A., Stowe, A. C., Appl. Phys. Lett., 101, 202101 (2012).CrossRefGoogle Scholar
Stowe, A. C., Woodward, J., Tupitsyn, E., Rowe, E., Wiggins, B., Matei, L., Bhattacharya, P., Burger, A.. J. Crystal Growth, dx.doi.org/10.1016/j.crysgro.2013.01.015 (2013).Google Scholar
Bell, Z., Burger, A., U.S. Patent No. 7,687,780 (2010).Google Scholar
Hoppe, R., Bull. Soc. Chim. Fr. 1115 (1965).Google Scholar
Isaenko, L., Yelisseyev, A., Lobanov, S., Krinitsin, P., Petrov, V., Zondy, J.-J., J. Non-Cryst. Solids, 352, 2439 (2006).CrossRefGoogle Scholar
Stowe, A. C., Burger, A., U.S. Patent Application 13/658,59 (2012).Google Scholar