Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:33:03.675Z Has data issue: false hasContentIssue false

Liquid Crystalline Nano-Segregated Structures in Hydrogen-Bonded Complexes of Fluoroalkyl Substituted Benzoic Acids

Published online by Cambridge University Press:  15 March 2011

Etsushi Nishikawa
Affiliation:
Japan Science and Technology Corporation, Yokoyama Nano-structured Liquid Crystal Project TRC, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
Jun Yamamoto
Affiliation:
Japan Science and Technology Corporation, Yokoyama Nano-structured Liquid Crystal Project TRC, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
Hiroshi Yokoyama
Affiliation:
Japan Science and Technology Corporation, Yokoyama Nano-structured Liquid Crystal Project TRC, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
Get access

Abstract

Several new benzoic acid derivatives having perfluorinated substituents were synthesized and their hydrogen-bonded complexes with 4, 4’-dipyridyl were prepared. In these acid/base complexes the incompatibility between perfluoroalkyl moieties and hydrocarbon parts is large, which can lead to organize nano-segregation structures. We have found in one of such complexes, that has a long flexible fluorinated moiety, a thermotropic cubic phase with Ia3d symmetry formed by double gyroid of two interpenetrating jointed rod networks with an estimated cell parameter of 10.9 nm. Furthermore another complex with a branched long perfluoroalkyl terminal chain exhibits a first order smectic A to smectic C phase transition, which is confirmed with thermal analysis detecting a large enthalpy change of 5.3 kJxmol-1, X-ray scattering experiments revealing a tilt angle jump, and polarized optical microscopy observing a remarkable texture change at the phase transition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tschierske, C., J. Mater. Chem. 11, 1 (2001).Google Scholar
2. Petrov, V. F., Duan, M., Okamoto, H., Mu, J., Shimizu, Y. and Takenaka, S., Liq. Cryst. 28, 387 (2001). CC7.8.5Google Scholar
3. Kromm, P., Cotrait, M. and Nguyen, H. T., Liq. Cryst. 21, 95 (1996).Google Scholar
4. Eremin, A., Diele, S., Pelzl, G., Kovalenko, L., Pelz, K. and Weissflog, W., Liq. Cryst. 28, 1451 (2001).Google Scholar
5. Pensec, S., Tournilhac, F.-G., Bassoul, P. and Durliat, C., J. Phys. Chem. B 102, 52 (1998).Google Scholar
6. Kölbel, M., Beyersdorf, T., Cheng, X. H., Tschierske, C., Kain, J. and Diele, S., J. Am. Chem. Soc., in print (2001).Google Scholar
7. Kato, T. and Fréchet, J. M. J., J. Am. Chem. Soc. 111, 8533 (1989).Google Scholar
8. Kato, T., Fréchet, J. M. T., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. and Kaneuchi, F., Chem. Mater. 5, 1095 (1993).Google Scholar
9. Kutsumizu, S., Yamada, M. ans Yano, S., Liq. Cryst. 16, 1109 (1994).Google Scholar
10. Kutsumizu, S., Ichikawa, T., Nojima, S. and Yano, S., J. Chem. Phys. B 104, 1181 (2000).Google Scholar
11. Nishikawa, E., Yamamoto, J. and Yokoyama, H., Chem. Lett., 2001, 454.Google Scholar
12. Nishikawa, E. and Samulski, E. T., Liq. Cryst. 27, 1437 (2001).Google Scholar
13.Handbook of Liquid Crystals”, ed. by Demus, D., Goodby, J., Gray, W. G., Spiess, H.-W. and Vill, V., Wiley-VCH, Weinheim (1998).Google Scholar
14. Donnio, B., Heinrich, B., Gulik-Krzywicki, T., Delacroix, H., Guillon, D. and Bruce, D. W., Chem. Mater. 9, 2951 (1997).Google Scholar
15. Balagurusamy, V. S. K., Ungar, G., Percec, V. and Johansson, G., J. Am. Chem. Soc. 119, 1539 (1997).Google Scholar
16. Yoshizawa, A., Umezawa, J., Ise, N., Sato, R., Soeda, Y., Kusumoto, T., Sato, K., Hiyama, T., Takanishi, Y. and Takezoe, H., Jpn. J. Appl. Phys. 37, L942 (1998).Google Scholar