Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-07T23:22:09.582Z Has data issue: false hasContentIssue false

Lifetime Regime in the Electrically-Detected Transient Grating Method Applied to Amorphous and Microcrystalline Silicon Films

Published online by Cambridge University Press:  01 February 2011

P. Sanguino
Affiliation:
Physics Department, Instituto Superior Técnico, IST, Lisboa, Portugal
M. Niehus
Affiliation:
Physics Department, Instituto Superior Técnico, IST, Lisboa, Portugal
S. Koynov
Affiliation:
Physics Department, Instituto Superior Técnico, IST, Lisboa, Portugal
P. Brogueira
Affiliation:
Physics Department, Instituto Superior Técnico, IST, Lisboa, Portugal
R. Schwarz
Affiliation:
Physics Department, Instituto Superior Técnico, IST, Lisboa, Portugal
J.P. Conde
Affiliation:
Departament of Materials Engineering, Instituto Superior Técnico, IST, Lisboa, Portugal
V. Chu
Affiliation:
INESC Microsystems and Nanotechnologies, Lisbon, Portugal
E.A. Schiff
Affiliation:
Physics Department, Syracuse University, Syracuse, NY, U.S.A.
Get access

Abstract

The minority-carrier diffusion length in thin silicon films can be extracted from the electrically-detected transient grating method, EDTG, by a simple ambipolar analysis only in the case of lifetime dominated carrier transport. If the dielectric relaxation time, τdiel, is larger than the photocarrier response time, τR, then unexpected negative transient signals can appear in the EDTG result. Thin silicon films deposited by hot-wire chemical vapor deposition (HWCVD) near the amorphous-to-microcrystalline transition, where τR varies over a large range, appeared to be ideal candidates to study the interplay between carrier recombination and dielectric response. By modifying the ambipolar description to allow for a time-dependent carrier grating build-up and decay we can obtain a good agreement between analytical calculation and experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ritter, D., Zeldov, E., and Weiser, K., Phys. Rev. B38, 8296 (1988).10.1103/PhysRevB.38.8296Google Scholar
[2] Li, Y.M., Phys. Rev. B42, 9025 (1990).10.1103/PhysRevB.42.9025Google Scholar
[3] Wang, F. and Schwarz, R., Appl. Phys. Lett. 65, 884 (1994).10.1063/1.112189Google Scholar
[4] Hundhausen, M. and Ley, L., Appl. Phys. Lett. 67, 2518 (1995).10.1063/1.114444Google Scholar
[5] Gu, Q., Schiff, E.A., Grebner, S., Wang, F., and Schwarz, R., Phys. Rev. Lett. B76, 3196 (1996).10.1103/PhysRevLett.76.3196Google Scholar
[6] Schwarz, R., J. Non-Cryst. Sol. 227-230, 148 (1998).10.1016/S0022-3093(98)00029-5Google Scholar
[7] Conde, J.P., Brogueira, P., and Chu, V., Phil. Mag. B76, 299 (1997).10.1080/01418639708241095Google Scholar
[8] Sanguino, P., Schwarz, R., Murias, T., Conde, J.P., Brogueira, P., and Chu, V., Mat. Res. Soc. Symp. Proc. 507, 193 (1998).Google Scholar
[9] Wang, F. and Schwarz, R., Phys. Rev. B52, 14586 (1995).10.1103/PhysRevB.52.14586Google Scholar