Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T02:11:35.649Z Has data issue: false hasContentIssue false

LEEM / PEEM Study of Anisotropic Diffusion Fields in the Ag/Si(001) System

Published online by Cambridge University Press:  01 February 2011

Dirk Wall
Affiliation:
[email protected], University of Duisburg-Essen, Physics, Lotharstrasse 1, Duisburg, 47057, Germany
Kelly Ryan Roos
Affiliation:
[email protected], Bradley University, Department of Physics, 1501 West Bradley Avenue, Peoria, IL, 61625, United States
Michael Horn-von Hoegen
Affiliation:
[email protected], Universität Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Lotharstrasse 1, Duisburg, 47057, Germany
Frank-Joachim Meyer zu Heringdorf
Affiliation:
[email protected], Universität Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Lotharstrasse 1, Duisburg, 47057, Germany
Get access

Abstract

We used direct imaging of diffusion fields in photoemission electron microscopy to study the diffusion (an)isotropy of Ag on flat and vicinal Si(001) surfaces with miscut angles between 0.2° and 4° in the [110] direction. While the diffusion field, represented by its iso-coverage zone, is isotropic on flat Si(001), it becomes elongated on the vicinal surface. The aspect ratio of the iso-coverage zone is used as a measure of the effective diffusion anisotropy on the surface. The aspect ratio of the iso-coverage zone increases continuously with the miscut angle, up to the maximum miscut that was studied. For the 4° miscut surface we find that the shape of the diffusion field is independent of the kink density of the substrate. From the temperature dependence of the aspect ratio, we determine an effective energy of ΔEani ∼ 0.7 eV for the activation energy responsible for the anisotropy.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Linderoth, T. R., Mortensen, J. J., Jacobsen, K. W., Lægsgaard, E., Stensgaard, I., and Besenbacher, F., Phys. Rev. Lett. 77, 87 (1996).Google Scholar
[2] Greaney, P. Alex and Chrzan, D. C., Phys. Rev. B 72, 115432 (2005).Google Scholar
[3] Roos, K., Roos, K., Hoegen, M. Horn-von, and Heringdorf, F. Meyer zu, J. Phys: Condensed Matter 17, 1407 (2005).Google Scholar
[4] Heringdorf, F. Meyer zu, Schmidt, T., Heun, S., Hild, R., Zahl, P., Ressel, B., Bauer, E., and Hoegen, M. Horn-von, Phys. Rev. Lett. 86, 5088 (2001).Google Scholar
[5] Roos, K., Roos, K., Lohmar, I., Wall, D., Krug, J., Hoegen, M. Horn-von, and Heringdorf, F. Meyer zu, Phys. Rev. Lett. 100, 016103 (2008).Google Scholar
[6] Tromp, R. and Reuter, M., Ultramicroscopy 36, 99 (1991).Google Scholar
[7] Michely, T., Reuter, M., Copel, M., and Tromp, R., Phys. Rev. Lett. 73, 2095 (1994).Google Scholar
[8] Lin, X., Wan, K., and Nogami, J., Phys. Rev. B 49, 7385 (1994).Google Scholar
[9] Wan, K., Lin, X., and Nogami, J., Phys. Rev. B 47, 13700 (1993).Google Scholar
[10] G. Le Lay, Manneville, M., and Kern, R., Surface Science 72, 405 (1978).Google Scholar
[11] Lifshits, V., Saranin, A., and Zotov, A., Surface Phases on Silicon, p. 6264, Wiley (1994).Google Scholar
[12] Pehlke, E. and Tersoff, J., Phys. Rev. Lett. 67, 465 (1991).Google Scholar
[13] Alerhand, O. L., Berker, A. N., Joannopoulos, J. D., Vanderbilt, D., Hamers, R. J., and Demuth, J. E., Phys. Rev. Lett. 64, 2406 (1990).Google Scholar
[14] Alerhand, O. L., Berker, A. Nihat, Joannopoulos, J. D., Vanderbilt, D., Hamers, R. J., and Demuth, J. E., Phys. Rev. Lett. 66, 962 (1991).Google Scholar
[15] Bartelt, N. C., Einstein, T. L., and Rottman, C., Phys. Rev. Lett. 66, 961 (1991).Google Scholar
[16] Meier, A., Zahl, P., Vockenroth, R., and Hoegen, M. Horn-von, Appl. Surf. Sci. 123, 694 (1998).Google Scholar
[17] Tong, X. and Bennett, P. A., Phys. Rev. Lett. 67, 101 (1991).Google Scholar
[18] Chadi, D., Phys. Rev. Lett. 59, 1691 (1987).Google Scholar
[19] Tromp, R., Mankos, M., Reuter, M., Ellis, A., and Copel, M., Surf. Rev. Lett. 5, 1189 (1998).Google Scholar
[20] Ehrlich, G. and Hudda, F., The Journal of Chemical Physics 44, 1039 (1966).Google Scholar
[21] Schwoebel, R. L. and Shipsey, E. J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
[22] Roos, K. and Tringides, M., Phys. Rev. Lett. 85, 1480 (2000).Google Scholar
[23] Roos, K. and Tringides, M., Phys. Rev. Lett. 87, 149606 (2001).Google Scholar
[24] Morgenstern, K., Rosenfeld, G., Lægsgaard, E., Besenbacher, F., and Comsa, G., Phys. Rev. Lett. 80, 556 (1998).Google Scholar
[25] Haftel, M. I., Phys. Rev. B 64, 125415 (2001).Google Scholar
[26] Markov, I., Phys. Rev. B 56, 12544 (1997).Google Scholar
[27] Kürpick, U. and Rahman, T. S., Phys. Rev. B 57, 2482 (1998).Google Scholar