Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T05:12:55.710Z Has data issue: false hasContentIssue false

Laves Phase-Based Materials: Microstructure, Deformation Modes and Properties

Published online by Cambridge University Press:  15 February 2011

K. S. Kumar*
Affiliation:
Division of Engineering, Brown University, Providence, Rhode Island 02912
Get access

Abstract

Intermetallic compounds with the AB2 stoichiometry can exist with the C14, C15 or C36 structures, otherwise called Laves phases. In the past, single-phase Laves compounds, particularly Mg-containing binary compounds, have been examined to obtain an understanding of the dislocation structures as well as their mobility; alternately, effort has also been expended in examining the polytypic transformations that occur in such Laves phases. More recently however, Laves phases and polyphase alloys containing the Laves phase have been examined with the intent of developing structural alloys for elevated temperature applications. Specifically, alloys based on the Cr-Group IV(Ti, Zr, Hf) and Group V (Nb, Ta) elements as well as the ternary V-Hf-Nb system have been the focus of several investigations. Physical and mechanical properties have been measured, and microstructure has been characterized as a function of heat treatment. Deformation modes have been re-examined in detail. New ideas based on synchroshear have been put forth to explain the polytypic transformations that occur in these systems, and have been extended to also explain twinning and slip. Earlier observations are first summarized and then these recent advances are reviewed and the potential for these materials is assessed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Livingston, J.D., phys. stat. sol. (a), 131, 415 (1992).Google Scholar
2. Livingston, J.D., in High-Temperature Suicides and Refractory Alloys. Vol. 322, editors: Briant, C.L., et al. MRS, Pittsburgh, PA, p. 395 (1994).Google Scholar
3. Komura, Y. and Kitano, Y., Acta Cryst., B33, 2496 (1977).Google Scholar
4. Barrett, C. and Massalski, T., Structure of Metals (3rd edition), Pergamon Press, 1980, p. 256.Google Scholar
5. Thoma, D.J. and Perepezko, J.H., J. of Alloys and Compounds, 224, 330 (1995).Google Scholar
6. Komura, Y., Mitarai, M., Nakaue, A. and Tsujimoto, S., Acta Cryst., B28, 976 (1972).Google Scholar
7. Kai, K., Nakamichi, T. and Yamamoto, M., J. Phys. Soc. Japan, 25, 1192 (1968).Google Scholar
8. Hazzledine, P.M. and Pirouz, P., Scripta Metall. Mater., 28, 1277 (1993).Google Scholar
9. Kumar, K.S. and Hazzledine, P.M., in High Temperature Ordered Intermetallic Alloys VI. Vol. 364; editors: Horton, J.A. et al, MRS Pittsburgh, 1995, p. 1383.Google Scholar
10. Smith, A.W., Rogers, J.A. and Rawlings, R.D., Phys. Stat. Sol. (a) 15, K119 (1973).Google Scholar
11. Bruckner, W., Kleinstuck, K. and Schulze, G.E.R., Phys. Stat. Sol. 23, 475 (1967).Google Scholar
12. Bruckner, W., Permei, R., Kleinstuck, K. and Schulze, G.E.R., Phys. Stat. Sol. 29, 211 (1968).Google Scholar
13. Inoue, K. and Tachikawa, K., IEEE Trans. Magn., Mag-13, 840 (1977).Google Scholar
14. Peterson, D.T., Verhoeven, J.D., McMasters, O.D. and Spitzig, W.A., J. Appl. Phys., 65, 3713 (1989).Google Scholar
15. Chu, F., Sob, M., Siegl, R., Mitchell, T.E., Pope, D.P. and Chen, S.P., Philos. Mag. B, 70, 881 (1994).Google Scholar
16. Chu, F., Lei, M., Siegl, R., Migliori, A., Chen, S.P. and Mitchell, T.E., Philos. Mag. B, 70, 867 (1994).Google Scholar
17. Chu, F., He, Y., Thoma, D.J. and Mitchell, T.E., Scripta Metali Mater., 33, 1295 (1995).Google Scholar
18. Ormeci, A., Chu, F., Wills, J.M., Mitchell, T.E., Alberts, R.C., Thoma, D.J. and Chen, S.P., in Phys. Rev. B, submitted for publication.Google Scholar
19. Balankin, A.S. and Skorov, D.M., Sov. Phys. Solid State, 24, 681 (1982).Google Scholar
20. Finlayson, T.R., Lanston, E. J., Simpson, M.A., Gibbs, E.E. and Smith, T.F., J. Phys. F: Metal Phys., 8, 2269 (1978).Google Scholar
21. Balankin, A.S., Bychkov, Yu. F. and Yakovlev, Ye. I., Phys. Met. Metall, 56, 119 (1983).Google Scholar
22. Takashima, T. and Hayashi, H., Phys. Lett., 47A, 209 (1974).Google Scholar
23. Allen, C.W., Delavignette, P. and Amelinckx, S., phys. stat. sol. (a), 9, 237 (1972).Google Scholar
24. Yoshida, M., Takasugi, T., and Hanada, S., in High Temperature Ordered Intermetallic Alloys VI, Vol. 364; editors: Horton, J.A. et al, MRS Pittsburgh, 1995, p. 1395.Google Scholar
25. Chu, F., Ormeci, A.H., Mitchell, T.E., Wills, J.M., Thoma, D.J., Albers, R.C. and Chen, S.P., Philos. Mag. Lett., 72, 147 (1995).Google Scholar
26. Liu, Y., Livingston, J.D. and Allen, S.M., Metall. Trans., 23A, 3303, (1992).Google Scholar
27. Kumar, K.S. and Miracle, D.B., lntermetallics, 2, 257 (1994).Google Scholar
28. Liu, Y., Livingston, J.D. and Allen, S.M., Metall. Mater. Trans., 26A, 1441 (1995).Google Scholar
29. Kronberg, M.L., Acta Metali, 5, 507, (1957).Google Scholar
30. Amelinckx, S., in Dislocations in Solids. Vol. 2; edited by Nabarro, F.R.N., North Holland, Amsterdam, 1979, p. 67.Google Scholar
31. Hazzledine, P. M., in Twinning in Advanced Materials: edited by Yoo, M.H. and Wuttig, M., TMS, Warrendale, PA., 1994, p. 403.Google Scholar
32. Paufler, P., Marschner, J. and Schulze, G.E.R., phys. stat. sol., 40, 573 (1970).Google Scholar
33. Paufler, P., Marschner, J. and Schulze, G.E.R., phys. stat. sol. (b), 43, 279 (1971).Google Scholar
34. Kubsch, H., Paufler, P. and Schulze, G.E. R., phys. stat. sol. (b), 56, 231 (1973).Google Scholar
35. Kubsch, H., Paufler, P. and Schulze, G.E. R., phys. stat. sol. (a), 25, 269 (1974).Google Scholar
36. Livingston, J.D. and Hall, E.L., J. Mater. Res., 5, 5 (1990).Google Scholar
37. Moran, J.B., TMS-AJME, 233, 1473 (1965).Google Scholar
38. Liu, Y., Allen, S.M. and Livingston, J.D., Metall. Mater. Trans. 26A, 1107 (1995).Google Scholar
39. Chu, F. and Pope, D.P., in High Temperature Ordered Intermetallic Alloys V. Vol. 288; editors: Baker, I. et al, MRS Pittsburgh, 1993, p. 561.Google Scholar
40. Chu, F. and Pope, D.P., Mater. Sci. Eng., A170, 39 (1993).Google Scholar
41. Chen, K.C., Allen, S.M. and Livingston, J.D., in High Temperature Ordered Intermetallic Allovs V. Vol. 288; editors: Baker, I. et al, MRS Pittsburgh, 1993, p. 373.Google Scholar
42. Bewlay, B.P., Sutliff, J.A., Jackson, M.R. and Lipsitt, H.A., Acta Metall. Mater., 42, 2869 (1994).Google Scholar
43. Chu, F.M. and Pope, D.P., J. Mater. Sci and Tech., 9, 313 (1993).Google Scholar
44. Pope, D.P. and Chu, F., Philos. Mag. A, 69, 409 (1994).Google Scholar
45. Allen, C.W. and Liao, K.C., Phys. Stat. Sol. (a), 74, 673 (1982).Google Scholar
46. Hazzledine, P.M., Kumar, K.S., Miracle, D.B. and Jackson, A.G., in High Temperature Ordered Intermetallic Allovs V. Vol. 288; editors: Baker, I. et al, MRS Pittsburgh, 1993, p. 591.Google Scholar
47. Takasugi, T., Hanada, S. and Miyamoto, K., J. Mater. Res., 8, 3069 (1993).Google Scholar
48. Takeyama, M. and Liu, C.T., Mater. Sci. Eng., A132, 61 (1991).Google Scholar
49. Bewlay, B.P. and Jackson, M.R., J. Mater. Res., - submitted for publication.Google Scholar
50. Chen, K.C., Allen, S.M. and Livingston, J.D., J. Mater. Res., - submitted for publication.Google Scholar
51. Machon, L. and Sauthoff, G., lntermetallics, 4, 469 (1996).Google Scholar
52. Thoma, D.J. and Perepezko, J.H., Mater. Sci. Eng., A156, 97 (1992).Google Scholar
53. Muller, Th. and Paufler, P., phys. stat. sol. (a), 40, 471 (1977).Google Scholar
54. Paufler, P. and Schulze, G.E. R., phys. stat. soi, 24, 77 (1967).Google Scholar
55. Takasugi, T., Hanada, S. and Yoshida, M., Mater. Sci. Eng., A192/193, 805 (1995).Google Scholar
56. Davidson, D.L. and Chan, K.S., “Investigation of Fracture Resistance in Microstructures of Intermetallic Materials for High-Temperature Service”, AFOSR Final Report F49620–92-C-0022, 1995.Google Scholar
57. Ravichandran, K.S., Miracle, D.B. and Mendiratta, M.G., Mater. Res. Soc. Symp. Proc. vol. 350, MRS, Pittsburgh, PA., p. 249, 1995 Google Scholar