Article contents
Laves Phase-Based Materials: Microstructure, Deformation Modes and Properties
Published online by Cambridge University Press: 15 February 2011
Abstract
Intermetallic compounds with the AB2 stoichiometry can exist with the C14, C15 or C36 structures, otherwise called Laves phases. In the past, single-phase Laves compounds, particularly Mg-containing binary compounds, have been examined to obtain an understanding of the dislocation structures as well as their mobility; alternately, effort has also been expended in examining the polytypic transformations that occur in such Laves phases. More recently however, Laves phases and polyphase alloys containing the Laves phase have been examined with the intent of developing structural alloys for elevated temperature applications. Specifically, alloys based on the Cr-Group IV(Ti, Zr, Hf) and Group V (Nb, Ta) elements as well as the ternary V-Hf-Nb system have been the focus of several investigations. Physical and mechanical properties have been measured, and microstructure has been characterized as a function of heat treatment. Deformation modes have been re-examined in detail. New ideas based on synchroshear have been put forth to explain the polytypic transformations that occur in these systems, and have been extended to also explain twinning and slip. Earlier observations are first summarized and then these recent advances are reviewed and the potential for these materials is assessed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 11
- Cited by