Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:56:07.985Z Has data issue: false hasContentIssue false

Lattice-Matched Gaas/Ca0.45Sr0.55F2/Ge(100) Heterostrucuures Grown By Molecular Beam Epitaxy

Published online by Cambridge University Press:  28 February 2011

C. W. Tu
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. C. Beggy
Affiliation:
Department of Electrical Engineering, Yale University, New Haven, CT 06520
F. A. Baiocchi
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. M. Abys
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. J. Hsieh
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. F. Kopf
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. Caruso
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
A. S. Jordan
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Epitaxial, lattice-matched GaAs/Ca0.45Sr0.55/F2 heterostructures were grown on Ge(100) substrates by molecular beam epitaxy. The films were analyzed by Rutherford backscattering and secondary ion mass spectroscopy to determine crystallinity and Ge outdiffusion. The Xmin (channeling over random yield) of a 1.5 μm-thick GaAs film grown on the fluoride is 0.075, indicating reasonably good epitaxy. After rapid thermal annealing, the crystallinity of higher-Xmin films improves, and Ge diffuses only 200 A into the fluoride, indicating that a thin fluoride layer is an effective barrier to Ge outdiffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See, for example, Heteroepitaxy on Silicon, edited by Fan, J. C. C. and Poate, J. M. (Mat. Res. Soc., Pittsburg, 1986).Google Scholar
[2] Lee, J. W., (Mat. Res. Soc., Pittsburg, 1986), p. 29.Google Scholar
[3] Sakai, S., Soga, T., Takeyasu, M., and Umeno, M., (Mat. Res. Soc., Pittsburg, 1986), p. 15.Google Scholar
[4] Dupuis, R. D., Bean, J. C., Brown, J. M., Macrander, A. T., Miller, R. C., and Hopkins, L. C., J. Electronic Mat. 16, 69 (1987).Google Scholar
[5] Ishiwara, H., Asano, T., Lee, H. C., Kuriyama, Y., Seki, K., and Furukawa, S., in Heteroepitaxy on Silicon, edited by Fan, J. C. C. and Poate, J. M. (Mat. Res. Soc., Pittsburg, 1986), p. 105.Google Scholar
[6] Morkoc, H., Heteroepitaxy on Silicon, p. 149.Google Scholar
[7] Windborn, T. H., Turner, G. W., and Metze, G. M., Heteroepitaxy on Silicon, p. 157.Google Scholar
[8] Abdul Awal, M., Lee, E. H., Koos, g. L., Chan, E. Y., Celler, G. K., and Sheng, T. T., Heteroepitaxy on Silicon, p. 93.Google Scholar
[9] Chu, S. S., Chu, T. L., and Firouzi, H., Heteroepitaxy on Silicon, p. 135.Google Scholar
[10] Fischer, R., Klem, J., Henderson, T., Masselink, W. T., Kopp, W., and Morkoc, H., IEEE Electron Device Lett. EDL-5, 456 (1984).Google Scholar
[11] Tu, C. W., Wang, S. J., Phillips, J. M., Gibson, J. M., Stall, R. A., and Wunder, R. J., J. Vac. Sci. Technol. B 4, 637 (1986).Google Scholar
[12] Farrow, R. F. C., Sullivan, P. W., Williams, G. M., Jones, G. R., and Cameron, D. C., J. Vac. Sci. Technol. B, 19, 415 (1981).Google Scholar
[13] Asano, T., Ishiwara, H., Lee, H. C., Tsutsui, K., and Furukawa, S., Jpn. J. Appl. Phys. 25, L139 (1986).Google Scholar
[14] Chand, N. D., People, R., Baiocchi, F. A., Wecht, K. W., and Cho, A. Y., Appl. Phys. Lett. 49, 815 (1986).Google Scholar