Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:33:43.113Z Has data issue: false hasContentIssue false

Laser Growth of Thin Silicon Crystals in Patterned Structures

Published online by Cambridge University Press:  15 February 2011

R. M. Fastow
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974
H. J. Leamy
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974
G. K. Celler
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974
Y. H. Wong
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974
C. J. Doherty
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974
Get access

Abstract

Beam processing can be applied to thin, polycrystalline silicon films on amorphous substrates to: a( increase grain size, b( produce single, isolated crystals, and c( to produce oriented single crystals. Specific methods for these tasks are outlined. Crystal growth and heat flow consideration appropriate to each are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maurits, J. E. A., Solid State Techn., April 1977, p. 81.Google Scholar
2. Bean, K. E. and Runyan, W. R., J. Electrochem. Soc. 124, 5C, (1977).CrossRefGoogle Scholar
3. Maserjian, J., Solid State Elect. 6, 477 (1963).CrossRefGoogle Scholar
4. Kamins, T. I., Solid State Electronics 15, 789 (1972).CrossRefGoogle Scholar
5. Shah, R. R., Lam, H.-W., Crosthwait, L., and Tasch, A. Jr. in: Laser and Electron Beam Processing of Electronic Materials eds: Anderson, C. L., Celler, G. K., and Rozgonyi, G. A. (The Electrochem. Soc., Princeton, N. J. 1980), pp. 235, 241.Google Scholar
6. Gat, A., Gerzberg, L., Gibbons, J. F., Magee, T. J., Peng, J., and Hong, J. D., Appl. Phys. Lett. 33, 775 (1978).CrossRefGoogle Scholar
7. Bosch, M. A. and Lemons, R. A., this volume.Google Scholar
8. Celler, G. K., Leamy, H. J., Sheng, T. T., and Trimble, L. E., Appl. Phys. Lett., in press.Google Scholar
9. Kamins, T. I., Lee, K. F. and Gibbons, J. F., I.E.E.E. Electron Dev. Lett. EDL–1, 5 (1980).Google Scholar
10. Lee, K. F., Gibbons, J. F., Saraswat, K. C., and Kamins, T. I., Appl. Phys. Lett. 35, 173 (1979).CrossRefGoogle Scholar
11. Lam, H. W., Tasch, A. F. Jr., Holloway, T. C., Lee, K. F., and Gibbons, J. F., I.E.E.E. Elect. Dev. Lett. EDL–1 99 (1980).Google Scholar
12. Barnard, J., Frey, J., Lee, K. F., and Gibbons, J. F., to be published.Google Scholar
13. Gibbons, J. F., Lee, K. F., Magee, T. J., Peng, J., and Ormond, R., Appl. Phys. Lett. 34, 831 (1980).CrossRefGoogle Scholar
14. Kamins, T. I. and Pianetta, P. A., I.E.E.E. Elect. Dev. Lett. EDL–1, 214 (1980).Google Scholar
15. Lam, H. W., Tasch, A. F. Jr., and Holloway, T. C., I.E.E.E. Elect. Dev. Lett. EDL–1, 206 (1980).Google Scholar
16. Kuech, T. F. and McCaldin, J. O., Appl. Phys. Lett. 37, 44 (1980).CrossRefGoogle Scholar
17. Gibbons, J. F. and Lee, K. F., I.E.E.E. Elect. Dev. Lett. EDL–1, 117 (1980).Google Scholar
18. Geis, M. W., Flanders, D. C., and Smith, H. I., Appl. Phys. Lett. 35, 71 (1979).CrossRefGoogle Scholar
19. Leamy, H. J. and Doherty, C. J., Appl. Phys. Lett. 37, 1028 (1980).CrossRefGoogle Scholar