Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T04:05:32.606Z Has data issue: false hasContentIssue false

Kinetic Roughening of Interfaces and Mixing in Alloys Under Shear or Irradiation

Published online by Cambridge University Press:  15 February 2011

P. Bellon
Affiliation:
SRMP, CE Saclay, CEA, 91191, Gif-sur-Yvette, France
P. Partyka
Affiliation:
Materials Science & Engineering, 1304 W. Green St., Urbana, IL 61801, USA
Get access

Abstract

Both irradiation and plastic deformation can induce the stabilization of non-equilibrium phases in alloys. A simple kinetic atomistic model is used for describing these two situations, when the external forcing is acting in competition with thermally activated diffusion. Monte Carlo simulations are performed on alloys with positive heats of mixing. Both situations share common features : random solid solutions are stabilized at high enough forcing intensity (i.e. irradiation flux or shearing rate), while at moderate forcing intensities interfaces exhibit kinetic roughening. However, major differences are observed : alloys under irradiation undergo dynamical transitions between steady-states, such as a dynamical roughening transition at interfaces and a precipitation-dissolution transition in the bulk ; in alloys under shear such transitions are not observed ; instead the steady-state microstructure of a two-phase alloy is continuously refined on increasing the shearing rate. These differences originate from the size of the perturbation induced by the external forcing : the perturbation is of microscopic size for alloys under irradiation, while it is of macroscopic size for alloys under shear. Results obtained for the shearing case provide a rationalization scheme of ball milling experiments showing chemical mixing of immiscible elements. The fact that such systems consist of nanograins should also contribute to prevent the existence of 1st order phase transitions on varying the milling conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Russel, K. C., Prog. Mater. Science 38, 229 (1984).Google Scholar
[2] Koch, C. C., Mechanical Milling and Alloyin, in Materials Science and Technology, Vol. 15, edited by Calm, R. W., Haasen, P., and Kramer, E. J. (VCH, Weinheim, 1991), p.193.Google Scholar
[3] Kubo, R., Matsuo, K. and Kitahara, K., J. Stat. Phys. 9, 51 (1973).Google Scholar
[4] Schlögl, F., Phys. Rep. 62, 267 (1980).Google Scholar
[5] Suzuki, M., Prog. Theo. Physics Suppl. 79, 125 (1984).Google Scholar
[6] Bellon, P. and Martin, G., Phys. Rev. B 38, 2570 (1988) ; Phys. Rev. B 39 2403 (1989).Google Scholar
[7] Haider, F., Bellon, P. and Martin, G., Phys. Rev. B 42, 8274 (1990)Google Scholar
[8] Soisson, F., Bellon, P. and Martin, G., Phys. Rev. B 46, 11332 (1992).Google Scholar
[9] Vaks, V. G. and Kamyshenko, V. V., Physics Lett. A 177, 269 (1993).Google Scholar
[10] Vaks, V. G. and Beiden, S. V., Physics Lett. A 182, 140 (1993).Google Scholar
[11] Chen, Y., Bibole, M., Le Hazif, R. and Martin, G., Phys. Rev. B 48, 14 (1993).Google Scholar
[12] Pochet, P., Tominez, E., Chaffron, L. and Martin, G., Phys. Rev. B 52, 4006 (1995).Google Scholar
[13] Meakin, P., Phys. Reports 235, 189 (1993).Google Scholar
[14] Przybylowicz, M., Bellon, P. and Martin, G., in Solid->Solid Phase Transformations, eds. Johnson, W. C., Howe, J. M., Laughlin, D. E. and Soffa, W. A. (TMS, Warrendale,1994), p. 999.Solid+Phase+Transformations,+eds.+Johnson,+W.+C.,+Howe,+J.+M.,+Laughlin,+D.+E.+and+Soffa,+W.+A.+(TMS,+Warrendale,1994),+p.+999.>Google Scholar
[15] Yavari, A. R., Desre, P. J., and Benameur, T., Phys. Rev. Lett. 68, 2235 (1992).Google Scholar
[16] Gente, C., Oehring, M., and Bormann, R., Phys. Rev. B 48, 13244 (1993).Google Scholar
[17] Domb, C., Phase Transitions and Critical Phenomena, vol 3, edited by Domb, C. and Green, M. S., (Academic Press, 1974), p. 357.Google Scholar
[18] Kutner, R., Binder, K., and Kehr, K. W., Phys. Rev. B 26, 2967 (1982).Google Scholar
[19] Flynn, C. P., Point Defects and Diffusion, (Clarendon Press, Oxford, 1972), p. 310.Google Scholar
[20] Bortz, A. B., Kalos, M. H., and Lebowitz, J. L., J. Comp. Phys. 17, 10 (1975).Google Scholar
[21] Sizman, R., J. Nucl. Mater. 69&70, 386 (1978).Google Scholar
[22] Meckin, H. and Estrin, Y., Scripta Metall. 14, 815 (1980).Google Scholar
[23] Militzer, M., Sun, W. P. and Jonas, J. J., Acta Metall. 42, 133 (1994).Google Scholar
[24] Bellon, P. and Averback, R. S., Phys. Rev. Lett. 74, 1819 (1995).Google Scholar
[25] Bellon, P. and Averback, R. S., Solid State Phenomena 42&43, 69 (1995).Google Scholar
[26] Schlump, W., Grewe, H., in New Materials by Mechanical Alloying Techniques , Eds. Artz, E. and Schultz, L. (Oberursel, DGM Informations-gesellschaft, 1989), p 307.Google Scholar
[27] Shingu, P. H., Huang, B., Kuyama, J., Ishihara, K. N. and Nasu, S., in New Materials by Mechanical Alloying Techniques , Eds. Artz, E. and Schultz, L. (Oberursel, DGM Informations-gesellschaft, 1989), p 319.Google Scholar
[28] Martin, G. and Bellon, P., in Statics and Dynamics of Alloys Phase Formation ed. by Turchi, P.E.A. and Gonis, A., NATO-ASI series vol 319, p. 605.Google Scholar
[29] Pochet, P., Bellon, P., Chaffron, L. and Martin, G., this proceedings.Google Scholar
[30] Partyka, P., Averback, R. S., Robinson, I. K. and Bellon, P., Fall MRS Symp. A (eds. Ila, D., Harriott, L. R., Poker, D. B., Cheng, Y.-T.), 1995, to be published.Google Scholar
[31] Herr, U. and Samwer, K., in Solid->Solid Phase Transformations, eds. Johnson, W. C., Howe, J. M., Laughlin, D. E. and Soffa, W. A. (TMS, Warrendale,1994), p. 1039.Solid+Phase+Transformations,+eds.+Johnson,+W.+C.,+Howe,+J.+M.,+Laughlin,+D.+E.+and+Soffa,+W.+A.+(TMS,+Warrendale,1994),+p.+1039.>Google Scholar
[32] Klassen, T., Herr, U. and Averback, R. S., to be published.Google Scholar