Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T01:10:56.075Z Has data issue: false hasContentIssue false

Isolated and Embedded Silicon Based Nanodots: the Role of Surface Oxygen

Published online by Cambridge University Press:  11 February 2011

Marcello Luppi*
Affiliation:
INFM-S3 and Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41100 Modena, Italy
Stefano Ossicini
Affiliation:
INFM-S3 and DISMI, Università di Modena e Reggio Emilia, Via Allegri 13, I-42100 Reggio Emilia, Italy
*
*Tel. +39 059 2055323; Fax. +39 059 2055235; E-mail: [email protected]; Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, I-41100 Modena, Italy
Get access

Abstract

We have extensively studied the effects of oxygen on the optoelectronics properties of various types of isolated silicon nanodots, through ab initio total energy calculations within the density functional theory. Varying the cluster size we have considered different Si/O bonding geometries and different levels of oxidation. We provide strong evidences that the role of the interface region surrounding the silicon nanostructures have to be carefully taken into account in order to understand the striking optical properties of these systems. Moreover the multiple presence of silanone Si=O bonds at the nanodots surface is shown to provide a consistent interpretation of the photoluminescence red-shift observed in oxidized porous silicon samples. Finally for the first time we have performed ab initio calculations on small silicon nanodots embedded in a SiO2 matrix stressing the strong interplay between the nanodot and the surrounding host environment and the active role of the interface region between them.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kimerling, L.C., Appl. Surf. Sci. 159–160, 8 (2000).Google Scholar
2. Bisi, O., Ossicini, S., Pavesi, L., Surf. Sci. Reports 38, 5 (2000).Google Scholar
3. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G. and Priolo, F., Nature 408, 440 (2000).Google Scholar
4. Schuppler, S. et al., Phys. Rev. B 52, 4910 (1995).Google Scholar
5. van Buuren, T. et al., Phys. Rev. Lett. 80, 3803 (1998).Google Scholar
6. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G. and Delerue, C., Phys. Rev. L (1999).Google Scholar
7. Caldas, M.J., phys. stat. sol. (b) 217, 641 (2000).Google Scholar
8. Puzder, A., Williamson, A.J., Grossman, J.C., and Galli, G., Phys. Rev. Lett. 88 097401(2002).Google Scholar
9. Filonov, A.B., Ossicini, S., Bassani, F. and Arnaud D'Avitaya, F., Phys. Rev. B 65, 195317 (2002).Google Scholar
10. Vasiliev, I., Chelikowsky, J.R., and Martin, R.M., Phys. Rev. B 65, 121302(R) (2002).Google Scholar
11. Luppi, M., and Ossicini, S., phys. stat. sol. (a) in press (2002).Google Scholar
12. Bockstedte, M., et al., Comput. Phys. Commun. 107, 187 (1997).Google Scholar
13. Milman, V., et al., Int. J. Quant. Chem. 77, 895 (2000).Google Scholar
14. Kageshima, H. and Shiraishi, K., Phys. Rev. Lett. 81, 5936 (1998).Google Scholar
15. Ikarashi, N. and Watanabe, K., Jpn. J. Appl. Phys. 39, 1278 (2000).Google Scholar
16. Sammynaiken, R. et al. J. Appl. Phys. 92, 3000 (2002).Google Scholar
17. Prakash, G.V. et al., J. Nanosci. Nanotech. 1, 159 (2001)Google Scholar