Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T15:59:27.646Z Has data issue: false hasContentIssue false

Ion Irradiation Effects in Solid Oxide Fuel Cell Electrolytes

Published online by Cambridge University Press:  26 February 2011

Jeremy Cheng
Affiliation:
Rapid Prototyping Laboratory, Stanford University, Building 530, Room 226, Stanford, CA 94305, U.S.A.
Rojana Pornprasertsuk
Affiliation:
Rapid Prototyping Laboratory, Stanford University, Building 530, Room 226, Stanford, CA 94305, U.S.A.
Yuji Saito
Affiliation:
Rapid Prototyping Laboratory, Stanford University, Building 530, Room 226, Stanford, CA 94305, U.S.A.
Fritz B. Prinz
Affiliation:
Rapid Prototyping Laboratory, Stanford University, Building 530, Room 226, Stanford, CA 94305, U.S.A.
Get access

Abstract

Single crystal Ytrria-stabilized Zirconia was irradiated with Xe2+ and Xe3+ ions at 320 and 450 keV over a range of doses from 1013 to 1016 ions/cm2. Damage appears as a 150 nm surface layer with a dense dislocation network. The X-ray diffraction pattern shows an increasing lattice expansion with increasing dose that reaches a saturation point. Ion irradiation increases the surface conductance of the material; this effect is removed with certain post-treatments. Preliminary isotope depth profiling indicates enhanced ion diffusion in the damaged layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuller, H.L., Solid State Ion. 131, 143157 (2000).Google Scholar
2. Jiang, S., Schulze, W.A., Amarakoon, V.R.W., and Stangle, G.C., J. Mater. Res. 12 (9), 23742380 (1997).Google Scholar
3. van Hassel, B.A. and Burggraaf, A.J., Appl. Phys. A 53, 155163 (1991).Google Scholar
4. Xie, D.Z., Zhu, D.Z., Cao, D.X., and Zhou, Z.Y., Nucl. Inst. and Meth. B 132, 425429 (1997).Google Scholar
5. Raz, S., Stelzer, N., Kalish, R., Maier, J., and Reiss, I., presented at Solid State Ionics 14, Monterey, CA, 2003 (unpublished).Google Scholar
6. Yasuda, K., Kinoshita, C., Matsumura, S., and Ryazanov, A.I., J. Nucl. Mat. 319, 7480 (2003).Google Scholar
7. Hojo, T., Aihara, J., Hojou, K., Furuno, S., Yamamoto, H., Nitani, N., Yamashita, T., Minato, K., and Sakuma, T., J. Nucl. Mat. 319, 8186 (2003).Google Scholar
8. Wang, L.M., Wang, S.X., Zhu, S., and Ewing, R.C., J. Nucl Mat. 289, 122127 (2001).Google Scholar
9. Yasuda, K., Nastasi, M., Sickafus, K., Maggiore, C.J., and Yu, N., Nucl. Inst. and Meth. B 136–138, 488504 (1998).Google Scholar
10. Sickafus, K.E., Matzke, Hj., Yasuda, K., Chodak, P. III, Verrall, R.A., Lucuta, P.G., Andrews, H.R., Turos, A., Fromknecht, R., and Baker, N.P., Nucl. Inst. and Meth. B 141, 358365 (1998).Google Scholar
11. Sickafus, K.E., Matzke, Hj., Hartmann, Th., Yasuda, K., Valdez, J.A., Chodak, P. III, Nastasi, M., and Verrall, R.A., J. Nucl. Mat. 274, 6677 (1999).Google Scholar
12. Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985).Google Scholar
13. Ham, R.K., Phil. Mag. 6, 11831184 (1963).Google Scholar