Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T21:33:29.668Z Has data issue: false hasContentIssue false

Ion Energy/Momentum Effects During Ion Assisted Growth of NbXNY Films

Published online by Cambridge University Press:  11 February 2011

M. L. Klingenberg
Affiliation:
Concurrent Technologies Corporation, Johnstown, PA, USA
J. D. Demaree
Affiliation:
US Army Research Laboratory, Aberdeen Proving Ground, MD, USA
J. K. Hirvonen
Affiliation:
US Army Research Laboratory, Aberdeen Proving Ground, MD, USA
R. Messier
Affiliation:
Pennsylvania State University, University Park, PA, USA
Get access

Abstract

In a previous paper, it was shown that the tribological properties of NbxNy thin films produced by ion beam assisted deposition (IBAD) depend strongly on the beam energy and the ion-to-atom (R) ratio. This study was designed to separate ion energy vs. ion momentum effects on film stress, crystalline phase, grain size, morphology, and composition, all of which influence the tribological properties of the films. Inert ion beams (Kr, Ar, and Ne) were used in conjunction with a nitrogen gas backfill to independently control ion energy and ion momentum transfer to NbxNy films. The ion species, energies, and R ratios were chosen to create a matrix of coatings that exhibited the same total energy deposition with different momentum transfer or the same momentum transfer but different total energy deposition. The resultant films were characterized using Rutherford Backscattering Spectroscopy (RBS), x-ray diffraction (XRD), atomic force microscopy (AFM), and residual stress analysis. Crystalline phases and texture, as well as residual stress, were more closely correlated with ion momentum transfer to the coating atoms than with overall ion energy input.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klingenberg, M.L. and Demaree, J.D., Surf. Coat. Technol. 146–147 (2001) 243 Google Scholar
2. Havey, K. S., Zabinski, J. S., and Walck, S. D., Thin Solid Films, 303 (1–2) (1997) 238 Google Scholar
3. Wang, Z., et al., J. Appl. Phys., 79 (10) (1996) 7837 Google Scholar
4. Winter, C. H., Jayaratne, K. C., and Proscia, J. W., Mat. Res. Soc. Symp. Proc., (1994) 103 Google Scholar
5. Pierson, H. O., Handbook of Refractory Carbides and Nitrides, Noyes Publications, Westwood, NJ, 1996. p. 170 Google Scholar
6. Wong, M. S., and Sproul, W. D., J. Vac. Sci. Technol., 11 (4) (1993) 1528 Google Scholar
7. Barnett, S. A., Sproul, W. D., and Wong, M. S., Deposition and Properties of Novel Nitride Superlattice Coatings, Department of Energy Report No. DOE/ER/45434–5, 1996, pp. 56 Google Scholar
8. Hotovy, I., et al., Physica Status Solidi, A161 (1) (1997) 97 Google Scholar
9. Wolf, G. K., J. Vac. Sci. Technol., A10 (4) (1992) 1757 Google Scholar
10. Fenske, G. and Erck, R. A., Advanced Ceramics Report, March (1991) 25 Google Scholar
11. Hubler, G. K. and Hirvonen, J. K., in Reidenbach, F. (ed.), ASM Handbook, Vol. 5, ASM International, Materials Park, OH, 1994, p. 593 Google Scholar
12. Wolf, G. K., Mat. Sci. Eng., A115 (1989) 118 Google Scholar
13. Kester, D.J. and Messier, R., J. App. Phys., 72 (2) (1992) 504513 Google Scholar
14. Doolittle, L. R., Nucl. Instrum. Meth., B15 (1986) 227 Google Scholar
15. Messier, R., Yehoda, J.E., Pilione, L.J. in Handbook of Plasma Processing Technology (eds. Rosnagel, S.M., Cuomo, J.J., and Westwood, W.D.), Noyes Publications, Westwood, NJ, 1990, p. 448465 Google Scholar
16. Smith, D.L., Thin-Film Deposition: Principles & Practices, McGraw-Hill, Inc., New York, New York, 1995, pp. 401411 Google Scholar
17. Baba, K., et al., Nucl. Instrum. Meth., B 127/128, (1997) 841 Google Scholar
18. Gotoh, Y., et al., Nucl. Instrum. Meth., B 148 (1999) 925 Google Scholar
19. Thornton, J.A., Ann. Rev. Mater. Sci., 7 (1977) 239 Google Scholar
20. Nastasi, M., Mayer, J.W., Hirvonen, J.K., Ion-Solid Interactions: Fundamentals and Applications, Cambridge University Press, Cambridge, Great Britain, 1996, p. 388 Google Scholar
21. Windischmann, H., Thin Solid Films, 154 (1987) 159 Google Scholar
22. Hultman, L., et al., J. Vac. Sci. Technol., A9 (3) (1991) 434 Google Scholar
23. Rauschenbach, B., et al., Nucl. Instrum. Meth., B 127/128, (1997) 813 Google Scholar
24. Windischmann, H., Crit. Rev. in Sol. State and Matl. Sci., 17 (6) (1992) 547 Google Scholar
25. Rauschenbach, B. and Ensinger, W., Nucl. Instrum. Meth., B 80/81, (1993) 1409 Google Scholar
26. Windischmann, H., J. Vac. Sci. Technol., A9 (4) (1991) 2431 Google Scholar
27. Smith, D.L., Thin-Film Deposition: Principles & Practices, McGraw-Hill, Inc., New York, New York, 1995, pp. 186, 430Google Scholar
28. Window, B., et al., J. Vac. Sci. Technol., A6 (4) (1988) 2333 Google Scholar
28. Window, B., J. Vac. Sci. Technol., A7 (5) (1989) 3036 Google Scholar
29. Window, B., J. Vac. Sci. Technol., A8 (3) (1990) 1277 Google Scholar