Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T03:27:20.383Z Has data issue: false hasContentIssue false

Ion Channel Sensor on a Silicon Support

Published online by Cambridge University Press:  15 March 2011

Michael Goryll
Affiliation:
Arizona State University, Department of Electrical Engineering, Tempe, AZ 85287
Seth Wilk
Affiliation:
Arizona State University, Department of Electrical Engineering, Tempe, AZ 85287
Gerard M. Laws
Affiliation:
Arizona State University, Department of Electrical Engineering, Tempe, AZ 85287
Stephen M. Goodnick
Affiliation:
Arizona State University, Department of Electrical Engineering, Tempe, AZ 85287
Trevor J. Thornton
Affiliation:
Arizona State University, Department of Electrical Engineering, Tempe, AZ 85287
Marco Saraniti
Affiliation:
Illinois Institute of Technology, Department of Electrical and Computer Engineering, Chicago, IL 60616
John M. Tang
Affiliation:
Rush Medical College, Department of Molecular Biophysics and Physiology, Chicago, IL 60612
Robert S. Eisenberg
Affiliation:
Rush Medical College, Department of Molecular Biophysics and Physiology, Chicago, IL 60612
Get access

Abstract

We are building a biosensor based on ion channels inserted into lipid bilayers that are suspended across an aperture in silicon. The process flow only involves conventional optical lithography and deep Si reactive ion etching to create micromachined apertures in a silicon wafer. In order to provide surface properties for lipid bilayer attachment that are similar to those of the fluorocarbon films that are currently used, we coated the silicon surface with a fluoropolymer using plasma-assisted chemical vapor deposition. When compared with the surface treatment methods using self-assembled monolayers of fluorocarbon chemicals, this novel approach towards modifying the wettability of a silicon dioxide surface provides an easy and fast method for subsequent lipid bilayer formation. Current-Voltage measurements on OmpF ion channels incorporated into these membranes show the voltage dependent gating action expected from a working porin ion channel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Trojanovicz, M., Fresenius J. Anal. Chem. 371, 246 (2001).Google Scholar
2. Montal, M. and Mueller, P., Proc. Natl. Acad. Sci. USA 69, 3561 (1972).Google Scholar
3. Wonderlin, W. F., Finkel, A., and French, R. J., Biophys. Journal 58, 289 (1990).Google Scholar
4. Schmidt, C., Mayer, M., and Vogel, H., Angew. Chem. Int. Ed. 39, 3137 (2000).Google Scholar
5. Pantoja, R., Sigg, D., Blunck, R., Bezanilla, F., and Heath, J. R., Biophys. Journal 81, 2389 (2001).Google Scholar
6. Peterman, M. C., Ziebarth, J. M., Braha, O., Bayley, H., Fishman, H. A., and Bloom, D. M., Biomedical Microdevices 4, 231 (2002).Google Scholar
7. Fertig, N., Klau, M., George, M., Blick, R. H., and Behrend, J. C., Appl. Phys. Lett. 81, 4865 (2002).Google Scholar
8. Straaten, T. A. van der, Tang, J. M., Eisenberg, R. S., Ravaioli, U., and Aluru, N. R., J. Computational Electronics 1, 335 (2002).Google Scholar
9. Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbusch, J. P., Nature 358, 727 (1992).Google Scholar
10. Lou, K.-L., Saint, N., Prilipov, A., Rummel, G., Benson, S. A., Rosenbusch, J. P., and Schirmer, T., J. Biol. Chem. 271, 20669 (1996).Google Scholar
11. White, S. H., Biophys. Journal 12, 432 (1972).Google Scholar
12. Mayer, M., Kriebel, J. K., Tosteson, M. T., and Whitesides, G. M., Biophys. Journal 85, 2684 (2003).Google Scholar
13. Ayón, A.A., Braff, R., Lin, C. C., Sawin, H. H., and Schmidt, M. A., J. Electrochem. Soc. 146, 339 (1999).Google Scholar
14. Goryll, M., Wilk, S., Laws, G. M., Thornton, T., Goodnick, S., Saraniti, M., Tang, J., and Eisenberg, R. S., Superlattices and Microstructures (2004) (in press).Google Scholar
15. DePalma, V. and Tillman, N., Langmuir 5, 868 (1989).Google Scholar
16. Tada, H. and Nagayama, H., Langmuir 11, 136 (1995).Google Scholar
17. Man, P. F., Gogoi, B. P., and Mastrangelo, C. H., J. Microelectromech. Sys. 6, 25 (1997).Google Scholar
18. Smith, B. K., Sniegowski, J. J., LaVigne, G., and Brown, C., Sensors and Actuators A70, 159 (1998).Google Scholar
19. O'Kane, D. F. and Rice, D. W., J. Macromol. Sci. Chem. A10, 567 (1976).Google Scholar
20. Lau, K. K. S., Caulfield, J. A., and Gleason, K. K., J. Vac. Sci. Technol. A 18, 2404 (2000).Google Scholar
21. Washo, B. D., J. Macromol. Sci. Chem. A10, 559 (1976).Google Scholar
22. Levis, R. A. and Rae, J. L., Methods Enzymol. 207, 66 (1992).Google Scholar
23. Levis, R. A. and Rae, J. L., “Technology of patch clamp recording electrodes“, Patch-clamp Applications and Protocols, ed. Walz, W., Boulton, A. and Baker, G. (Humana Press, Totowa, NJ, 1995) pp. 136 Google Scholar