Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T03:13:16.389Z Has data issue: false hasContentIssue false

Ion Beam Modification of Film Stress and the Effectiveness of Thin Film Encapsulants on GaAs

Published online by Cambridge University Press:  26 February 2011

T. E. Haynes
Affiliation:
University of North Carolina, Chapel Hill, N C 27599-3255
S. T. Picraux
Affiliation:
Sadia Natinal Laboratories, albuquerque, N M 87185
S. R. Lee
Affiliation:
Sadia Natinal Laboratories, albuquerque, N M 87185
W. K. Chu
Affiliation:
University of North Carolina, Chapel Hill, N C 27599-3255
Get access

Abstract

Ion implantation has been used to modify the initial stress in thin (40 nm) SiO2 films on G a As, and to condition the SiO2-G a As interface to pro mote adhesion. The effectiveness of these implanted films as caps to suppress decomposition of GaAs during rapid thermal processing has been studied, and this provides an indicator of the mechanical stability of the films. Measurements of the initial film stress, as well as stress changes caused by implantation and annealing, have been made to help interpret the implantation results. Our results indicate that ion implantation does not have a strong effect on the performance of thin film SiO2 encapsulants on GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. EerNisse, E. P., J. Appl. Phys. 45, 167 (1974).CrossRefGoogle Scholar
2. EerNisse, E. P., Norris, C. B., J. Appl. Phys. 45, 5196 (1974).CrossRefGoogle Scholar
3. Arnold, G. W., Mat. Res. Soc. Symp. Proc. 44, 617 (1985).CrossRefGoogle Scholar
4. Tombrello, T. A., Nucl. Instrum. Meth. 218, 679 (1983).CrossRefGoogle Scholar
5. Baglin, J. E. E., Clark, G. J., Nucl. Instrum. Meth. B 7/8, 881 (1985).CrossRefGoogle Scholar
6. Radjabov, T. D., Kamardin, A. I., Iskanderova, Z. A., Parpiev, M. P., Nucl. Instrum. Meth. B 28, 344 (1987).CrossRefGoogle Scholar
7. Pearton, S. J., Gibson, J. M., Jacobson, D. C., Poate, J. M., Williams, J. S., Boerma, D. O., Mat. Res. Soc. Symp. Proc. 52, 351 (1986).CrossRefGoogle Scholar
8. Haynes, T. E., Chu, W. K., Aselage, T. L., Picraux, S. T., Appl. Phys. Lett. 49, 666 (1986).CrossRefGoogle Scholar
9. Haynes, T. E., Chu, W. K., Picraux, S. T., Appl. Phys. Lett. 50, 1071 (1987).CrossRefGoogle Scholar
10. Lucovsky, G., Richard, P. D., Tsu, D. V., Lin, S. Y., Markunas, R. J., J. Vac. Sci. Technol. A 4, 681 (1986).CrossRefGoogle Scholar
11. Ziegler, J. F., Biersack, J. P., Littmark, U., The Stopping and Ranges of Ions in Solids (Pergamon Press, 1985).Google Scholar
12. Segmuller, A., Angilelo, J., LaPlaca, S. J., J. Appl. Phys. 51, 6224 (1980).CrossRefGoogle Scholar
13. Haynes, T. E., Chu, W. K., Aselage, T. L., Picraux, S. T., J. Appl. Phys., to be published (Feb. 1988).Google Scholar
14. Chopra, K. L., Thin Film Phenomena (McGraw-Hill, 1969).Google Scholar
15. Brantley, W. A., J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
16. Yasuami, S., Mikami, H., Hojo, A., Jap. J. Appl. Phys. 22, 1567 (1983).CrossRefGoogle Scholar
17. Picraux, S. T., in Ion Implantation in Semiconductors and Other Materials, edited by Crowder, B. L., p. 641 (Plenum, 1973)CrossRefGoogle Scholar