Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T13:15:33.212Z Has data issue: false hasContentIssue false

Ion Beam Irradiation Induced Structural Modifications in Iron Phosphate Glasses: A Model System for Understanding Radiation Damage in Nuclear Waste Glasses

Published online by Cambridge University Press:  03 March 2015

Amy S. Gandy
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Martin C. Stennett
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Clive Brigden
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Neil C. Hyatt
Affiliation:
Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
Get access

Abstract

Fe K-edge X-ray absorption spectroscopy (XAS) was applied to study the structural response of iron phosphate glasses to atomic displacements arising from ion beam irradiation, as an analogue of α-recoil damage arising from actinide immobilization. Analysis of XAS spectra demonstrated reduction of Fe3+ to Fe2+ as a consequence of 2 MeV Kr+ and 2 MeV Au+ implantation to a fluence of 2 x 1016 ions / cm2 and 5 x 1015 ions / cm2, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mesko, M. G., Day, D.E., Journal of Nuclear Materials 273, 27, (1999)CrossRefGoogle Scholar
Marasinghe, G.K., Karabulut, M., Ray, C.S., Day, D.E., Shuh, D.K., Allen, P.G., Saboungi, M.L., Grimsditch, M., Haeffner, D., Journal of Non-Crystalline Solids 263&264, 146, (2000).Google Scholar
Weber, W. J., Ewing, R. C., Catlow, C. R. A., Diaz de la Rubia, T., Hobbs, L. W., Kinoshita, C., Matzke, Hj., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R., Zinkle, S. J., Journal of Materials Research,13, No. 6, (1998)CrossRefGoogle Scholar
Fang, X., Ray, C. S., Mogus-Milankovic, A., Day, D. E., Journal of Non-Crystalline Solids 283, 162, (2001).CrossRefGoogle Scholar
Qiu, D., Moss, R. M., Pickup, D. M., Ahmed, I., Knowles, J. C., Newport, R. J., Journal of Non-Crystalline Solids 354, 55425546, (2008).CrossRefGoogle Scholar
Calas, G., Brown, G. E. Jr, Waychunas, G. A., Petiau, J., Physics and Chemistry of Minerals, 15, 1929, (1987).CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Ranges of Ions in Solids, Pergamon Press, New York, 1985. Available from: <http://www.srim.org>.Google Scholar
Ravel, B. and Newville, M., Journal of Synchrotron Radiation, 12, 537 (2005).CrossRefGoogle Scholar
Elam, W. T., Kirkand, J. P., Neiser, R. A., Wolf, P. D., Physical Review B, 38, 26, (1988).CrossRefGoogle Scholar
Farges, F., Lefrere, Y., Rossano, S., Berthereau, A., Calas, G., Brown, G. E. Jr, Journal of Non-Crystalline Solids, 344, 176188 (2004).CrossRefGoogle Scholar