Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:25:00.313Z Has data issue: false hasContentIssue false

Ion Beam Epitaxy of in-situ Er-O Co-Doped Silicon Films

Published online by Cambridge University Press:  10 February 2011

Morito Matsuoka
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki 319-11, Japan, mmatuoka @ iba. iecl.ntt.jp
Shun-Ichi Tohno
Affiliation:
NTT Opto-electronics Laboratories, Tokai, Ibaraki 319-11, Japan, mmatuoka @ iba. iecl.ntt.jp
Get access

Abstract

Erbium-doped silicon films are grown by ion beam epitaxy (IBE) using an electric-mirror sputtering-type metal ion source in ultrahigh vacuum. In-situ erbium doping with concentrations ranging from 1×1016 to 6×1020 cm−3 is achieved by sputtering the erbium metal pellet with ions extracted from the silicon metal ion source. The oxygen concentration in the films is also controlled in-situ over the range from below 1×1018 to 2×1020 cm−3 by using argon gases containing 1 ppb to 100 ppm of oxygen impurities. The erbium incorporation probability drastically increases (by two or more orders of magnitude) when oxygen is contained in the argon gas during film growth. Erbium is selectively oxidized in the Si host. Erbium segregation and precipitation formation are well suppressed by the oxidation. Sharp and well-split photoluminescence is clearly observed in as-deposited films grown typically at 480°C with oxygen co-doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For example, “Rare earth doped semiconductors”, Mat. Res. Soc. Symp. Proc. 301 (1993).Google Scholar
2. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett., 43, 943 (1983).Google Scholar
3. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett., 46, 381 (1985).Google Scholar
4. Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Jap. J. Appl. Phys., 29, L524 (1990)Google Scholar
5. Eaglesham, D. J., Michel, J., Fitzgerald, E. A., Jacobson, D. C., Poate, J. M., Benton, J. L., Polman, A., Xie, Y. -H., and Kimerling, L. C., Appl. Phys. Lett., 58, 2797 (1991).Google Scholar
6. Efeoglu, H., Evans, J. H., Jackman, T. E., Hamilton, B., Houghton, D. C., Langer, J. M., Peaker, A. R., Perovic, D., Poole, I., Ravel, N., Hemment, P., and Chan, C. W., Semicond. Sci. & Technol., 8, 236 (1993).Google Scholar
7. Priolo, F., Coffa, S., Franzo, G., Spinella, C., Carnera, A., and Bottoni, Y., J. Appl. Phys., 74, 4936 (1993).Google Scholar
8. Takahei, K., Taguchi, A., Horikoshi, Y., and Nakata, J., J. Appl. Phys., 76, 4332 (1994).Google Scholar
9. Matsuoka, M. and Tohno, S., J. Vac. Sci. & Technol., A13, 305 (1995).Google Scholar
10. Matsuoka, M. and Tohno, S., Appi. Phys. Lett., 66, 1862 (1995).Google Scholar
11. Matsuoka, M. and Ono, K., J. Vac. Sci. & Technol., A8, 1840 (1990).Google Scholar
12. Matsuoka, M. and Ono, K., J. Vac. Sci. & Technol., A7, 2652 (1989).Google Scholar
13. Matsuoka, M. and Tohno, S., J. Appl. Phys., 78, 2757 (1995).Google Scholar
14. Serna, S., Lohmeier, M., Zagwijn, P. M., Vlieg, E., and Polman, A., Appl. Phys. Lett., 66, 1385 (1995).Google Scholar
15. Copel, M., Reuter, M. C., Hoegen, M. H. von, Trump, R. M., Phys. Rev., B–42, 16829 (1990).Google Scholar