Article contents
Investigations of Substrate-Selective Covalent Attachment for Genetically-Engineered Molecular Interconnects
Published online by Cambridge University Press: 01 February 2011
Abstract
Experimental investigations are presented regarding the surface-selective molecular selfassembly of fluorinated monochloroalkylsilane of the type (heptadecafluoro-1,1,2,2-tetrahydrodecyl) dimethylchlorosilane (denoted F17) on silicon dioxide (SiO2) and silicon nitride (Si3N4) surfaces. The goal is to investigate the controlled and selective surface self-assembly of these molecules as a potential route for substrate-selective covalent bonding of complex molecular assemblies to semiconductor substrates for on-chip interconnect and device applications. X-ray photoelectron spectroscopy (XPS), x-ray reflectivity (XRR) and atomic force microscopy (AFM) have been used to investigate the selectivity of the F17 self-assembly. Contrary to previous reported results, a high degree of F17 monolayer attachment selectivity is consistently observed between SiO2 and Si3N4 substrates for all three of the aforementioned monolayer characterization methods.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002
References
- 1
- Cited by