Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T00:31:51.062Z Has data issue: false hasContentIssue false

Investigations of Non-Micropipe X-Ray Imaged Crystal Defects in SiC Devices

Published online by Cambridge University Press:  15 March 2011

P. G. Neudeck
Affiliation:
NASA Glenn Research Center, M.S. 77-1, 21000 Brookpark Road, Cleveland, OH 44135
M. A. Kuczmarski
Affiliation:
NASA Glenn Research Center, M.S. 77-1, 21000 Brookpark Road, Cleveland, OH 44135
M. Dudley
Affiliation:
Dept. of Materials Science & Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
W. M. Vetter
Affiliation:
Dept. of Materials Science & Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
H. B. Su
Affiliation:
Dept. of Materials Science & Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
L. J. Keys
Affiliation:
NASA Glenn Research Center, M.S. 77-1, 21000 Brookpark Road, Cleveland, OH 44135
A. J. Trunek
Affiliation:
Akima Corporation, Fairview Park, OH 44126
Get access

Abstract

This paper updates on-going experimental and theoretical investigations of non-micropipe defects imaged by synchrotron white beam X-ray topography (SWBXT) in SiC devices and epitaxial layers. Computer-based thermal modeling of screw-dislocation related breakdown in SiC diodes has been initiated to gain insights into internal temperature profiles as a function of microplasma power. A preliminary study of epitaxial 4H- and 6H-SiC p+n mesa diodes indicates that very low angle boundaries, whose electrical properties have not previously been reported, do not significantly impact DC I-V properties (forward and reverse) measured at biases less than 70% of the SiC breakdown field. The presence of very small growth pits on the surface of commercial 4H-SiC epitaxial layers, almost undetectable by high magnification optical microscopy, was revealed by atomic force microscopy and found to correspond to the locations of closed core screw dislocations imaged by SWBXT.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsvetkov, V. F., Glass, R. C., Henshall, D., Asbury, D. A., and Carter, C. H. Jr., in Silicon Carbide, III-Nitrides, and Related Materials, ed. Pensl, G., Morkoc, H., Monemar, B., and Janzen, E. (Materials Science Forum 264–268, Trans Tech, 1998), pp. 38.Google Scholar
2. Si, W. and Dudley, M., in Silicon Carbide, III-Nitrides, and Related Materials, ed. Pensl, G., Morkoc, H., Monemar, B., and Janzen, E. (Materials Science Forum 264-268, Trans Tech, 1998), pp. 429432.Google Scholar
3. Neudeck, P. G., Huang, W., and Dudley, M., in Power Semiconductor Materials and Devices, ed. Pearton, S. J., Shul, R. J., Wolfgang, E., Ren, F., and Tenconi, S. (Mat. Res. Soc. Symp. Proc. 483, Warrandale, PA, 1998), pp. 285294.Google Scholar
4. Neudeck, P. G., Huang, W., and Dudley, M., IEEE Trans. Electron Devices 46, 478484 (1999).Google Scholar
5. Neudeck, P. G. and Fazi, C., IEEE Trans. Electron Devices 46, 485492 (1999).Google Scholar
6. FLUENT, Fluent, Inc., Lebanon, NH, USA. Google Scholar
7. Muller, S. G., Eckstein, R., Fricke, J., Hofmann, D., Hofmann, R., Horn, R., Mehling, H., and Nilsson, O., in Silicon Carbide, III-Nitrides, and Related Materials, ed. Pensl, G., Morkoc, H., Monemar, B., and Janzen, E. (Materials Science Forum 264-268, Trans Tech, 1998), pp. 623626.Google Scholar
8. Chynoweth, A. G., in Physics of III-V Compounds, edited by Willardson, R. K. and Beer, A. C. (Semiconductors and Semimetals 4, Academic Press, 1968) pp. 307325.Google Scholar
9. Konstantinov, A. O., Wahab, Q., Nordell, N., and Lindefelt, U., J. Electronic Materials 27 (4), 335341 (1998).Google Scholar
10. Zimmermann, U., in Wide-Bandgap Semiconductors for High Power, High Frequency and High Temperature, ed. by Denbaars, S., Shur, M. S., Palmour, J., and Spencer, M. (Mat. Res. Soc. Symp. Proc. 512, Warrendale, PA, 1998), pp. 151156.Google Scholar
11. Neudeck, G. W., The PN Junction Diode, Vol. 2, 2nd. ed., Modular Series on Solid State Devices, ed. Neudeck, G. W. and Pierret, R. F. (Addison-Wesley, 1989).Google Scholar
12. Keskar, N., Shenai, K., and Neudeck, P., in Silicon Carbide and Related Materials 1999, ed. Carter, C. H. Jr., Devaty, R. P. and Rohrer, G. S., (Materials Science Forum 338-342, Trans Tech, 2000).Google Scholar
13. Schnabel, C. M., Tabib-Azar, M., Neudeck, P. G., Bailey, S. G., Su, H. B., and Dudley, M., in Silicon Carbide and Related Materials 1999, ed. Devaty, R. P. and Rohrer, G. S. ed. Carter, C. H. Jr., Devaty, R. P. and Rohrer, G. S., (Materials Science Forum 338-342, Trans Tech, 2000).Google Scholar
14. Cree Research, Inc., Durham, NC, USA, Silicon Carbide Product Specifications, August 1999.Google Scholar
15. Powell, J. A. and Larkin, D. J., Phys. Stat. Sol. (b) 202 (1), 529548 (1997).Google Scholar