Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T00:00:21.778Z Has data issue: false hasContentIssue false

Investigation of Template Releasing Energy in Nanoimprint Lithography

Published online by Cambridge University Press:  20 March 2013

Tomoki Nishino
Affiliation:
Physics and Electronics Engineering, Osaka. Prefecture University, Sakai, Japan Core Res. for Evolutional Sci. and Technol. (CREST), JST, Kawaguchi, Saitama, Japan
Norihiro Fujikawa
Affiliation:
Physics and Electronics Engineering, Osaka. Prefecture University, Sakai, Japan Core Res. for Evolutional Sci. and Technol. (CREST), JST, Kawaguchi, Saitama, Japan
Hiroaki Kawata
Affiliation:
Physics and Electronics Engineering, Osaka. Prefecture University, Sakai, Japan Core Res. for Evolutional Sci. and Technol. (CREST), JST, Kawaguchi, Saitama, Japan
Yoshihiko Hirai
Affiliation:
Physics and Electronics Engineering, Osaka. Prefecture University, Sakai, Japan Core Res. for Evolutional Sci. and Technol. (CREST), JST, Kawaguchi, Saitama, Japan
Get access

Abstract

To investigate template releasing process in nanoimprint lithography, template releasing energy (i.e. surface energy between the template and the resist polymer) in various releasing conditions is evaluated using multi-axial controlled releasing system. The releasing energy is in proportion to the surface free energy of the template, but does not depend on the velocity of releasing. Also, a peeling mode where the template is released from a single side and a lift-off mode where the template is removed in the perpendicular direction to the resist are examined. The result shows that the releasing energy by peeling mode is lower than that by lift-off modes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chou, S. Y., Krauss, P. R., and Renstrom, P. J.: J. Vac. Sci. Technol. B 14 4129(1996).CrossRefGoogle Scholar
Trabadelo, V., Schift, H., Merino, S., Bellini, S., Gobrecht, J.: Microelectron. Eng. 85 907(2008).CrossRefGoogle Scholar
Mekaru, H., Koizumi, O., Ueno, A., Takahashi, M.: Microsyst. Technol. 16, 1323(2010).CrossRefGoogle Scholar
Unno, N., Taniguchi, J., Ide, S., J. Vac. Sci. Technol. B 28, C6M32(2010).CrossRefGoogle Scholar
Worgull, M., Hetu, J.F., Kabanemi, K.K., Heckele, M.: Microsyst. Technol. 14, 767(2008).CrossRefGoogle Scholar
Dae-Geun, C., Dong-il, L., Kin-Don, K., Jun-Ho, J., Jun-Hyuk, C., Eung-Sug, L., Nanosci, J.:Nanotechnol. 9, 769(2009).Google Scholar
Obreimoff, J.: Proc. R. Soc. Lond. A 127, 290(1930).CrossRefGoogle Scholar
Taniguchi, J., Takeshi, K., Yuji, T., Yasuo, K., Iwao, M., Masanori, K., Hiroshi, H., Nobuji, S., Kentaro, T.: Jpn. J. Appl. Phys. Part 1 41, 4194(2002).CrossRefGoogle Scholar
Houle, F. A., Guyer, E., Miller, D. C., Dauskardt, R.: J. Vac. Sci. Technol. B 25, 1179(2007).CrossRefGoogle Scholar
Garidel, S., Zelsmann, M., Chaix, N., Voisin, P., Boussey, J., Beaurain, A., Pelissier, B.: J. Vac Sci. Technol. B 25, 2434(2007).CrossRefGoogle Scholar
Landis, S., Chaix, N., Gourgon, C., Leveder, T.: Nanotechnology 19, 125305(2008).CrossRefGoogle Scholar