Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T23:34:18.916Z Has data issue: false hasContentIssue false

Investigation of local light scattering properties of thin-film silicon solar cells with subwavelength resolution

Published online by Cambridge University Press:  27 June 2011

K. Bittkau
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
A. Hoffmann
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
J. Owen
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
R. Carius
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Get access

Abstract

In order to obtain efficient light trapping within a thin-film silicon solar cell, randomly textured interfaces are used. The texture can be introduced by wet-chemical etching in diluted hyrdofluoric acid (HF). By varying of the HF concentration, a continuous transition to smaller surface structures can be achieved. Near-field scanning optical microscopy is applied to measure scattered light with sub-wavelength resolution. On those different surfaces, using Fourier high-pass filters on the measured near-field images, surface features with a high light trapping potential are identified. Finally, criteria for optimized scattering surfaces are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nelson, J., The Physics of Solar Cells, Imperial College, London (2003).10.1142/p276Google Scholar
2. Yablonovitch, E., J. Opt. Soc. Am. 72, 899 (1982).10.1364/JOSA.72.000899Google Scholar
3. Campbell, P., J. Opt. Soc. Am. B 10, 2410 (1993).10.1364/JOSAB.10.002410Google Scholar
4. Löffler, J., Groenen, R., Linden, J.L., van de Sanden, M.C.M., and Schropp, R.E.I., Thin Solid Films 392, 315 (2001).10.1016/S0040-6090(01)01050-1Google Scholar
5. Stiebig, H., Schulte, M., Zahren, C., Haase, C., Rech, B., and Lechner, P., Proc. SPIE 6197, 619701 (2006).10.1117/12.662842Google Scholar
6. Krč, J., Zeman, M., Kluth, O., Smole, F., and Topič, M., Thin Solid Films 426, 296 (2003)10.1016/S0040-6090(03)00006-3Google Scholar
7. Bittkau, K., Beckers, T., Fahr, S., Rockstuhl, C., Lederer, F., and Carius, R., Phys. Status Solidi (a) 205, 2766 (2008).10.1002/pssa.200880454Google Scholar
8. Bittkau, K. and Beckers, T., Phys. Status Solidi 207, 661 (2010).10.1002/pssa.200982671Google Scholar
9. Bittkau, K., Beckers, T. and Carius, R., Proceedings 25th European Photovoltaic Solar Energy Conference and Exhibition, 2996-2999 (2010).Google Scholar
10. Owen, J.I., Hüpkes, J., Zhu, H., Bunte, E., and Pust, S.E., Phys. Status Solidi (a) 208, 109 (2011).10.1002/pssa.201026164Google Scholar
11. Bittkau, K., Schulte, M., Beckers, T., and Carius, R., Proc. SPIE 7725, 77250N (2010).Google Scholar
12. Beckers, T., Bittkau, K., and Carius, R.. J. Nonlin. Opt. Phys. Mat. 19, 645 (2010).10.1142/S0218863510005534Google Scholar