Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T09:07:12.375Z Has data issue: false hasContentIssue false

Investigation of Gd2@C90, Gd2C2@C92, and Gd2@C79N by Raman Spectroscopy

Published online by Cambridge University Press:  31 January 2011

Brian G. Burke
Affiliation:
[email protected], University of Virginia, Physics, Charlottesville, Virginia, United States
Jack Chan
Affiliation:
[email protected], University of Virginia, Physics, Charlottesville, United States
Keith A. Williams
Affiliation:
[email protected], University of Virginia, Physics, Charlottesville, Virginia, United States
Jiechao Ge
Affiliation:
[email protected], Virginia Polytechnic Institute and State University, Chemistry, Blacksburg, Virginia, United States
Chunying Shu
Affiliation:
[email protected], Virginia Polytechnic Institute and State University, Chemistry, Blacksburg, Virginia, United States
Wujun Fu
Affiliation:
[email protected], Virginia Polytechnic Institute and State University, Chemistry, Blacksburg, Virginia, United States
Harry C. Dorn
Affiliation:
[email protected], United States
Alexander Puretzky
Affiliation:
[email protected], Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee, United States
David Geohegan
Affiliation:
[email protected], Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee, United States
Get access

Abstract

The structure and vibrational spectrum of Gd2 and Gd2C2 endofullerenes are studied through Raman spectroscopy and universal force field (UFF) calculations. Hindered rotations, shown by both theory and experiment, indicate the formation of a Gd–cage bond, which reduces the ideal symmetry of the cage. We have conducted Raman studies of Gd2@C90, Gd2@C79N, and Gd2C2@C92. We have also studied Y2C2@C92 for comparison. Several modes have been identified which provide information about the endohedral complex.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heath, J., O'Brien, S. C., Zhang, Q., Liu, Y., Curl, R. F., Tittel, F. K., and Smalley, R. E., J. Am. Chem. Soc. 107, 77797780 (1985).10.1021/ja00311a102Google Scholar
2. Kobayashi, S., Mori, S., Iida, S., Ando, H., Takenobu, T., Taguchi, Y., Fujiwara, A., Taninaka, A., Shinohara, H., and Iwasa, Y., J. Am. Chem. Soc. 125, 8116 (2003).Google Scholar
3. Ross, R. B., Cardona, C. M., Guldi, D. M., Sankaranarayanan, S. G., Reese, M. O., Kipipdakis, N., Peet, J., Walker, B., Bazan, G. C., Keuren, E. Van, Holloway, B. C., and Drees, M., Nature Materials 8, 208 (2009).Google Scholar
4. Harneit, W., Phys. Rev. A 65, 032322 (2002).Google Scholar
5. Larsson, J. A., Greer, J. C., Harneit, W., and Weidinger, A., J. Chem. Phys. 116, 7849 (2002).Google Scholar
6. Kato, H., Kanazawa, Y., Okumura, M., Taninaka, A., Yokawa, T., and Shinohara, H., J. Am. Chem. Soc. 125, 4391 (2003).Google Scholar
7. Yang, H., Lu, C., Liu, Z., Jin, H., Che, Y., Olmstead, M. M., and Balch, A. L., J. Am. Chem. Soc. 130, 17296 (2008).10.1021/ja8078303Google Scholar
8. Zuo, T., Xu, L., Beavers, C. M., Olmstead, M. M., Fu, W., Crawford, T. D., Balch, A. L., and Dorn, H. C., J. Am. Chem. Soc. 130, 12992 (2008).Google Scholar
9. Lebedkin, S., Renker, B., Heid, R., Schober, H., and Rietschel, H., Appl. Phys. A 66, 273 (1998).10.1007/s003390050666Google Scholar
10. Jaffiol, R., Débarre, A., Julien, C., Nutarelli, D., Tchénio, P., Taninaka, A., Cao, B., Okazaki, T., and Shinohara, H., Phys. Rev. B 68, 014105 (2003).10.1103/PhysRevB.68.014105Google Scholar
11. Krause, M., Hulman, M., Kuzmany, H., Kuran, P., Dunsch, L., Dennis, T. J. S., Inakuma, M., and Shinohara, H., J. Mol. Struct. 521, 325 (2000).10.1016/S0022-2860(99)00451-2Google Scholar
12. Qian, M., Ong, S. V., Khanna, S. N., and Knickelbein, M. B., Phys. Rev. B 75, 104424 (2007).Google Scholar
13. Shinohara, H., Rep. Prog. Phys. 63, 843 (2000).Google Scholar
14. Shibata, K., Rikiishi, Y., Hosokawa, T., Haruyama, Y., Kubozono, Y., Kashino, Y., Uruga, T., Fujiwara, A., Kitagawa, H., Takano, T., and Iwasa, Y., Phys. Rev. B 68, 094194 (2003).Google Scholar
15. Mora, L., Ruoff, R. S., Becker, C. H., Lorents, D. C., and Malhotra, R., Phys. Chem. 97, 6801 (1993).10.1021/j100128a009Google Scholar
16. Funasaka, H., Sugiyama, K., Yamamoto, K., and Takahashi, T., J. Phys. Chem. 99, 1826 (1995).Google Scholar
17. Laasonen, K., Andreoni, W., and Parrinello, M., Science 258, 1916 (1992).Google Scholar
18. Ding, J., Weng, L., and Yang, S., J. Phys. Chem. 100, 11120 (1996).Google Scholar
19. Kobayashi, K. and Nagase, S., Chem. Phys. Lett. 262, 227 (1996).10.1016/0009-2614(96)01069-XGoogle Scholar
20. Burke, B. G., Chan, J., Williams, K. A., Ge, J., Shu, C. Y., Fu, W., Dorn, H. C., Kushmerick, J. G., Puretzky, A. A., and Geohegan, D. B., Phys. Rev. B [accepted, arXiv:0910.5273].Google Scholar
21. Krause, M., Liu, X., Wong, J., Pichler, T., Knupfer, M., and Dunsch, L., J. Phys. Chem. A 109, 7088 (2005).Google Scholar