Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T10:06:15.029Z Has data issue: false hasContentIssue false

Investigation of Free Exciton Properties in GaAs Epitaxial Layer

Published online by Cambridge University Press:  26 February 2011

Wu Fengmei
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P.R.China
Shi Yi
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P.R.China
Martin Parenteau
Affiliation:
'Departement de Physique, Universite de Sherbrooke, Sherbrooke J1K 2R1, Canada
Anouar Jorio
Affiliation:
'Departement de Physique, Universite de Sherbrooke, Sherbrooke J1K 2R1, Canada
Zheng Youdou
Affiliation:
Department of Physics, Nanjing University, Nanjing 210008, P.R.China
Cosmo Carlone
Affiliation:
'Departement de Physique, Universite de Sherbrooke, Sherbrooke J1K 2R1, Canada
Get access

Abstract

The transition energy, the binding energy, the intensity, the broadening and the lifetime of the free-exciton transitions in GaAs epitaxial layer have well been investigated using photoconductivity measurement which is analyzed in term of an improved fitting model. We have found that as the thickness is increased, the bind energy increases, but both the intensity of the high excitonic level and the lifetime of the excitons decrease. These effects are attributed mainly to imperfections located near the surface of the epitaxial layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Parenteau, M., Carlone, C., and Khanna, S. M., J. Appl. Phys. 71, 3747 (1992).Google Scholar
[2] Khanna, S. M., Carlone, C. Halle, S., Parenteau, M., Beliveau, A., Aktik, C., and Gerdes, J. W. Jr., IEEE Trans. Nucl. Sci. 38, 1145 (1991).Google Scholar
[3] Bimberg, D. and Schairer, W., Phys. Rev. Lett. 28, 442 (1972).Google Scholar
[4] Sell, D. D., Stokowski, S. E., Dingle, R., and DiLorenzo, J.V., Phys. Rev. B7,4568 (1973).Google Scholar
[5] Bebb, H. B. and Williams, E. W., in:Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1972), Vol. 8, p. 289.Google Scholar
[6] Svelto, O., Principles of Lasers (Plenum Press, New York, 1989), p. 30.Google Scholar
[7] Ryvkin, S. M., Photoelectric effects in semiconductors (Consultants Bureau, New York, 1964), p. 18.Google Scholar
[8] Nakao, K., Kamimura, H., and Nishina, Y., II Nuovo Cimento LXIII B, 45 (1969).Google Scholar
[9] Sell, D. D. and Lawaetz, P., Phys. Rev. Lett. 26, 311 (1971).Google Scholar
[10] Camassel, J., Merle, P., Mathieu, H., and Chevy, A., Phys. Rev. B 17, 4718 (1978).Google Scholar
[11] Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
[12] Sell, D. D., Phys. Rev. B 6, 3750 (1972).Google Scholar
[13] Berg, R. S., Mavalvala, N., Steinberg, T., and Smith, F. W., J. Electron. Mater. 19, 1323 (1990).Google Scholar
[14] Borkovskaya, O. Yu., Dmitruk, N. L., Litovshenko, V. G., and Maeva, O. I., Phys. Stat. Sol. A 84, 285 (1984).Google Scholar
[15] Sell, D. D., in: Proceedings of the 11th International Conference on the Physics of Semiconductors, edited by Miasek, M. (Elsevier, Amsterdam, and PWN-Polish Scientific, Warsaw, 1972).Google Scholar