Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T18:51:55.787Z Has data issue: false hasContentIssue false

Investigation of Electrical Properties in Si Ion Implanted GaN Layer as A Function of Dose and Energy

Published online by Cambridge University Press:  01 February 2011

Masataka Satoh
Affiliation:
[email protected], Hosei University, I.B. Tech, 3-7-2 Kajinocho, Koganei, Tokyo, 184-8584, Japan, +81-42-387-6094, +81-42-387-6095
T Saitoh
Affiliation:
[email protected], Hosei University, EECE and I.B. Tech, 3-7-2 Kajinocho, Koganei, Tokyo, 184-8584, Japan
K Nomoto
Affiliation:
[email protected], Hosei University, EECE and I.B. Tech, 3-7-2 Kajinocho, Koganei, Tokyo, 184-8584, Japan
T Nakamura
Affiliation:
[email protected], Hosei University, EECE and I.B. Tech, 3-7-2 Kajinocho, Koganei, Tokyo, 184-8584, Japan
Get access

Abstract

The sheet resistance and sheet carrier concentration for Si ion implanted GaN have been investigated as a function of Si ion dosages and ion's energy using van der Pauw method and Hall effect measurement. Si ion implanted GaN is annealed at 1200 °C for 10 sec in N2 gas flow with 50 nm-thick SiNx cap layer to avoid dissociation of GaN. For Si ion energy of 30 keV, the sheet resistance is decreased from 103 to 56 ohm/sq. for the dose ranging from 1 × 1014 to 2 × 1015/cm2. For the Si dose larger than 2 × 1015/cm2, the sheet carrier concentration is saturated around 1 ×s 1015/cm2. Si ion implanted GaN with energy of 50, 80, and 120 keV at a dose of 2 × 1015/cm2 also reveal the sheet carrier concentration of about 1 × 1015/cm2 with the decrease of electron mobility. It is suggested that the implanted Si donors are strongly compensated by the residual implantation-induced defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harima, H., J. Phys. Condens. Mater. 14, R967(2002).Google Scholar
2. Wraback, M., Shen, H., Carrano, J. C., Li, T., Campbell, J. C., Schurman, M. J., and Ferguson, I. T., Appl. Phys. Lett. 76, 1155 (2000).Google Scholar
3. Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., Allen, L. H., and Morkoc, H., Appl. Phys. Lett. 64, 1003(1994).Google Scholar
4. Fan, Z., Mohammad, S. N., Kim, W., Aktas, O., Botchkarev, A. E., and Morkoc, H., Appl. Phys. Lett. 68, 1672(1996).Google Scholar
5. Fellows, J. A., Yeo, Y. K., Hengehold, R. L., and Johnstone, D. K., Appl. Phys. Lett. 80, 1930(2002).Google Scholar
6. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys. 86, 1(1999).Google Scholar
7. Matsunaga, S., Yoshida, S., Kawaji, T., and Inada, T., J. Appl. Phys. 95, 2461(2004).Google Scholar
8. Nomoto, K., Ito, N., Tajima, T., Kasai, T., Mishima, T., Inada, T., Satoh, M., Nakamura, T., in GaN, AlN, InN and Related Materials, edited by Kuball, M., Myers, T. H., Redwing, J. M., Mukai, T. (Mater. Res. Soc. Symp. Proc. 892, Warrendale, PA, 2006), 0892-FF13-06.1.Google Scholar
9. Burm, J., Chu, K., Davis, W.A., Schaff, J., Eastman, L.F., and Eustis, T. J., Appl. Phys. Lett. 70, 464(1997).Google Scholar
10. Qiao, D., Guan, Z.F., Carlton, J., Lau, S.S., and Sullivan, G.J., Appl. Phys. Lett. 74, 2652(1999).Google Scholar
11. www.srim.org by J. F. Ziegler.Google Scholar
12. Ito, N., Suzuki, A., Kawamura, M., Nomoto, K., Kasai, T., Mishima, T., Inada, T., Nakamura, T., and Satoh, M., in GaN, AlN, InN and Related Materials, edited by M., Kuball, Myers, T. H., Redwing, J. M., Mukai, T. (Mater. Res. Soc. Symp. Proc. 892, Warrendale, PA, 2006), 0892-FF14-03.1.Google Scholar