Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T15:06:08.888Z Has data issue: false hasContentIssue false

Investigation into the thermoelectric properties of GaSb/InAs superlattice structures

Published online by Cambridge University Press:  25 July 2011

Philip T. Barletta
Affiliation:
Center for Solid-State Energetics, RTI International, Research Triangle Park, 27706, U.S.A.
Gary E. Bulman
Affiliation:
Center for Solid-State Energetics, RTI International, Research Triangle Park, 27706, U.S.A.
Geza Dezsi
Affiliation:
Center for Solid-State Energetics, RTI International, Research Triangle Park, 27706, U.S.A.
Thomas S. Colpitts
Affiliation:
Center for Solid-State Energetics, RTI International, Research Triangle Park, 27706, U.S.A.
Rama Venkatasubramanian
Affiliation:
Center for Solid-State Energetics, RTI International, Research Triangle Park, 27706, U.S.A.
Get access

Abstract

We report on our investigation into the use of III-V superlattice structures for thermoelectric (TE) applications. Preliminary review of III-V materials trends indicate that the GaSb/InAs superlattice system should offer one of the best potentials for high thermoelectric performance in the 500K-800K range. MOCVD growth of GaSb/InAs superlattice structures was carried out, and relevant structural, thermal, and electrical characterization has been performed. TEM and XRD results demonstrate a well-ordered superlattice structure. Thermal conductivity measurements reveal a reduction in the room-temperature thermal conductivity of GaSb/InAs superlattices (4.4-10.0 W/m-K), relative to either binary GaSb (32 W/m-K) or InAs (27 W/m-K). Additionally, we have worked to optimize the thermoelectric power factor (α2σ), studying both Se- and Te-doping of the superlattice structures, in an effort to demonstrate optimal thermoelectric performance. Our results demonstrate a maximum ZT of 0.36 at 400K for optimally doped n-type GaSb/InAs superlattice structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barletta, P.T., Berkman, E.A., Moody, B.F., El-Masry, N.A., Emara, A.M., Reed, M. J., and Bedair, S. M.. Appl. Phys. Lett. 90, 151109 (2007).Google Scholar
2. Fujii, T., Gao, Y., Sharma, R., Hu, E. L., DenBaars, S. P., and Nakamura, S.. Appl. Phys. Lett. 84, 855 (2004).Google Scholar
3. Mishra, U.K., Shen, L., Kazior, T.E., and Wu, Y.-F.. Proc. of the IEEE. 96, 287 (2008).Google Scholar
4. Guter, W., Schöne, J., Philipps, S. P., Steiner, M., Siefer, G., Wekkeli, A., Welser, E., Oliva, E., Bett, A.W., and Dimrot, F.. Appl. Phys. Lett. 94, 223504 (2009).Google Scholar
5. Okada, Y., Oshima, R., Takata, A.. J. Appl. Phys 106, 024306 (2009).Google Scholar
6. Zhang, X.B., Ryou, J.-H., Dupuis, R.D., Mou, S., Chuang, S.L., Xu, C., Hsieh, K.-C.. J. Crst. Gr. 287, 545 (2006).Google Scholar
7. Tsao, S., Lim, H., Zhang, W., and Razeghi, M.. Appl. Phys. Lett. 90, 201109 (2007).Google Scholar
8. Bahk, J.-H., Bian, Z., Zebarjadi, M., Zide, J., Lu, H., Xu, D., Feser, J. P., Zeng, G., Majumdar, A., Gossard, A. C., Shakouri, A., and Bowers, J. E.. Phys. Rev. B, 81, 235209 (2010).Google Scholar
9. ZT is given by the expression ZT = α2σT/κ, where α is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature, and κ is the thermal conductivity. Google Scholar
10. Goldsmid, H.J., Applications of Thermoelectricity, (Wiley, London, 1960).Google Scholar
11. Kroemer, H.. Physica E 20, 196 (2004).Google Scholar
12. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B.. Nature 413, 597 (2001).Google Scholar
13. Venkatasubramanian, R., O’Quinn, B., Siivola, E., Coonley, K., Addepally, P., Napier, M., and Colpitts, T.. MRS Proc. 793, S2.3.1.Google Scholar
14. Li, L.L., Xu, W., Zhang, J. and Shi, Y.L.. J. Appl. Phys. 105, 013115 (2009).Google Scholar
15. Mikhailova, M.P.. Handbook Series on Semiconductor Parameters, Vol. 1, edited by Levinshtein, M., Rumyantsev, S. and Shur, M.. (World Scientific, London, 1996) pp. 147168.Google Scholar
16. Ya, Vul’ A.. Handbook Series on Semiconductor Parameters, Vol. 1, edited by Levinshtein, M., Rumyantsev, S. and Shur, M.. (World Scientific, London, 1996) pp. 125146.Google Scholar