Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T02:38:39.847Z Has data issue: false hasContentIssue false

The Inverse Hall-Petch Effect—Fact or Artifact?

Published online by Cambridge University Press:  14 March 2011

Carl C. Koch
Affiliation:
Department of Materials Science and Engineering North Carolina State University Campus Box 7907 Raleigh, NC 27695-7907
J. Narayan
Affiliation:
Department of Materials Science and Engineering North Carolina State University Campus Box 7907 Raleigh, NC 27695-7907
Get access

Abstract

This paper critically reviews the data in the literature which gives softening—the inverse Hall-Petch effect—at the finest nanoscale grain sizes. The difficulties with obtaining artifactfree samples of nanocrystalline materials will be discussed along with the problems of measurement of the average grain size distribution. Computer simulations which predict the inverse Hall-Petch effect are also noted as well as the models which have been proposed for the effect. It is concluded that while only a few of the experiments which have reported the inverse Hall-Petch effect are free from obvious or possible artifacts, these few along with the predictions of computer simulations suggest it is real. However, it seems that it should only be observed for grain sizes less than about 10 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., “Nanocrystalline Materials,” Progress in Materials Science, 33 (1989), 223315.Google Scholar
2. Weertman, J. R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R., Swygenhoven, H. Van, MRS Bulletin, 24 (1999), 44.Google Scholar
3. Hall, E. O., Proc. Roy. Soc. (London) 364 (1951) 474.Google Scholar
4. Petch, N. J., J. Iron Steel Inst. 174 (1953) 25.Google Scholar
5. Cottrell, A. H., Trans. TMS-AIME, 212 (1958) 192.Google Scholar
6. Ke, M., Hackney, S. A., Milligan, W. W., and Aifantis, E. C., NanoStructured Mater. 5 (1995) 689.Google Scholar
7. Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23 (1989) 1679.Google Scholar
8. Morris, D. G., “Mechanical Behavior of Nanostructured Materials,” Material Science Foundations, No. 2, ed. Magini, M. and Wohlbier, F. H., (Uetikon-Zurich, Switzerland: Trans. Tech. Pubs., 1998) 4344.Google Scholar
9. Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res., 6 (1991), 1012.Google Scholar
10. Alves, H., Ferreira, M., Köster, U., and Müller, B., Mater. Sci. Forum 225–226 (1996) 769.Google Scholar
11. Lu, K., Wei, W. D., and Wang, J. T., Scripta Metall. Mater. 24 (1990) 2319.Google Scholar
12. Nieman, G. W. and Weertman, J. R., Morris E. Fine Symposium, (Warrendale, PA: The Minerals, Metals & Materials Society, 1991), 243250.Google Scholar
13. Mitra, R. Ungar, T., Morita, T., Sanders, P. G., Weertman, J. R., “Assessment of Grain Size Distribution in Nanocrystalline Copper and their Effect on Mechanical Behavior,” Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symposium, ed. Chung, Y.-W. et al. , (Warrendale, PA: The Minerals, Metals & Materials Society, 1999), 553564.Google Scholar
14. Zhang, X., Wang, H., Narayan, J., and Koch, C., “Evidence for Formation Mechanism of Nanoscale Microstructures in Cryomilled Zn Powder,” (Submitted for publication, 2000).Google Scholar
15. Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Met. Mater., 23 (1989), 2013.Google Scholar
16. Palumbo, G., Erb, U., and Aust, K. T., Scripta Met. Mater. 24 (1990) 2347.Google Scholar
17. Christman, T. and Jain, M., Scripta Met. Mater., 25 (1991) 767.Google Scholar
18. Kim, D. K. and Okazaki, K., Mater. Sci. Forum, 88–90 (1992) 553.Google Scholar
19. Cheung, H., Altstetter, C. J., and Averback, R. S., J. Mater. Res. 7 (1992) 2962.Google Scholar
20. Cheung, C., Palumbo, G., and Erb, U., Scripta Met. Mater. 31 (1994) 735.Google Scholar
21. Khan, A. S., Zhang, H., Takacs, L., Inter. J. Plasticity, 16 (2000) 1459.Google Scholar
22. Jang, J. S. C. and Koch, C. C., Scripta Metall. Mater. 24 (1990) 1599.Google Scholar
23. Mallow, T. R. and Koch, C. C., Metall. and Mater. Trans. A 29 (1998) 2285.Google Scholar
24. El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T., Scripta Met. Mat. 27 (1992) 1185.Google Scholar
25. Erb, U., NanoStructured Mater. 6 (1995) 533.Google Scholar
26. Narayan, J., Koch, C. C., Zhang, X., and Venkatesan, R., unpublished results, 2000.Google Scholar
27. Narayan, J., J. Nanoparticle Research 2(1) (2000) 91.Google Scholar
28. Schiøtz, J., DiTolla, F. D., and Jacobsen, K. W., Nature 391 (1998) 561.Google Scholar
29. Swygenhoven, H. Van, Caro, A., Spaczer, M., “Atomistic view of plasticity in nanophase materials,” Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symposium, ed. Chung, Y.-W. et al. , (Warrendale, PA: The Minerals, Metals & Materials Society, 1999), 399.Google Scholar
30. Yip, S., Nature 391 (1998) 532.Google Scholar
31. Nieh, T. G. and Wadsworth, J., Scripta Met. Mat. 25 (1991) 955.Google Scholar
32. Carsley, J. E., Ning, J., Milligan, W. W., Hackney, S. A. and Aifantis, E. C., NanoStructured Mater. 5 (1995) 441.Google Scholar
33. Wang, N., Wang, Z., Aust, K. T., and Erb, U., Acta Met. Mat. 43 (1995) 519.Google Scholar
34. Masumura, R. A., Hazzledine, P. M., and Pande, C. S., Acta Mat. 46 (1998) 4527.Google Scholar
35. Hahn, H. and Padmanabhan, K. A., Phil. Mag. B 76 (1997) 559.Google Scholar
36. Conrad, H. and Narayan, J., Scripta Mater. 42 (2000) 1025.Google Scholar
37. Scattergood, R. O. and Koch, C. C., Scripta Met. Mat. 27 (1992) 1195.Google Scholar