Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:20:30.754Z Has data issue: false hasContentIssue false

Interplay of Shock-induced Melting and Alloying in Nanostructured Multilayer Films

Published online by Cambridge University Press:  26 February 2011

Shijin Zhao
Affiliation:
[email protected], Los Alamos National Laboratory, Theoretical Division, MS G756, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States, 505-665-0405, 505-665-9427
Timothy C. Germann
Affiliation:
[email protected], Los Alamos National Laboratory, Applied Physics Division, Los Alamos, NM, 87545, United States
Alejandro Strachan
Affiliation:
[email protected], Purdue University, School of Materials Engineering, West Lafayette, IN, 47907, United States
Get access

Abstract

We identify a shock-induced melting and great facilities of the melting in accelerating subsequent alloying reactions in nanostructured Ni/Al multilayer films using a novel molecular dynamics technique, which captures the initial shock transit as well as the subsequent long time scale alloying process. We observe a pronounced increase of the pressure in the melting process (i.e., a process of coexistence of solid and liquid phases). As soon as the melting completes, the temperature increases dramatically indicating a start of explosive alloying reactions and the pressure starts to decrease. The pressure going up or down is determined by the competition between melting and alloying reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moore, D. S., Son, S. F., and Asay, B. W., Propellants, Explosives, Pyrotechnics, 29, 106 (2004).Google Scholar
2. Bockmon, B. S., Pantoya, M. L., Son, S. F., Asay, B. W., and Mang, J. T., J. Appl. Phys. 98, 064903 (2005).Google Scholar
3. Mann, A. B., Gavens, A. J., Reiss, M. E., Van Heerden, D., Bao, G., and Weihs, T. P., J. Appl. Phys. 82, 1178 (1997).Google Scholar
4. Klimenko, V. Y. and Dremin, A. N., Sov. Phys. Dokl. 25, 288 (1980); Prog. Astronaut. Aeronaut. 75, 253 (1981)Google Scholar
5. Belak, J., LLNL report No. UCRL-JC-109989, 1992.Google Scholar
6. Zhakhovskii, V. V., Zybin, S. V., Nishihara, K., Anisimov, S. I., Phys. Rev. Lett. 83, 1175 (1999).Google Scholar
7. Maillet, J. B., Mareschal, M., Soulard, L., Ravelo, R., Lomdahl, P. S., Germann, T. C., Holian, B. L., Phys. Rev. E 63, 06121 (2001).Google Scholar
8. Reed, E. J., Fried, L. E., Joannopoulos, J. D., Phys. Rev. Lett. 90, 235503 (2003).Google Scholar
9. Ravelo, R., Holian, B. L., Germann, T. C., Lomdahl, P. S., Phys. Rev. B 70, 014103 (2004).Google Scholar
10. Root, S, Hardy, R. J. and Swanson, D. R., J. Chem. Phys. 118, 3161 (2003).Google Scholar
11. Zhao, S. J., Germann, T. C., Strachan, A., J. Chem. Phys. 125, 164707 (2006).Google Scholar
12. Mishin, Y., Mehl, M. J., and Papaconstantopoulos, D. A., Phys. Rev. B 65, 224114 (2002).Google Scholar
13. Holian, B. L., Phys. Rev. A 37, 2562 (1988).Google Scholar
14. Hardy, R. J., J. Chem. Phys. 76, 622 (1982).Google Scholar