Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:53:13.318Z Has data issue: false hasContentIssue false

Internal Friction in Plastically Deformed High-Purity NiAl Single Crystals

Published online by Cambridge University Press:  10 February 2011

M. Hirscher
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
D. Schaible
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
Get access

Abstract

High-purity stoichiometric NiAl single crystals have been prepared by crucible-free inductive zone melting and afterwards well annealed at temperatures below 1200 K. Internal friction measurements of torsionally deformed single crystals show two relaxation maxima at 500 and 800 K which anneal during the measurement. The first maximum can be assigned to the dislocation motion by kinkpair formation and the annealing to pinning of these dislocations by interstitial impurity atoms. The second maximum is attributed to the Snoek-Köster relaxation of dislocations in the presence of mobile interstitial impurity atoms and the annealing to the pinning of dislocations by vacancies. The kink-pair formation enthalpy in NiAl was estimated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seeger, A., in Handbuch der Physik, edited by Flügge, S. (Springer, Berlin, 1955) p. 383.Google Scholar
2. Seeger, A., J. Physique 42, C5201 (1981); J. Physique (IV) 5, C7–45 (1995).Google Scholar
3. Miracle, D.B., Acta metall. mater. 41, 649 (1993).CrossRefGoogle Scholar
4. Essmann, U., Henes, R., Holzwarth, U., Klopfer, F., Büchler, E., phys. stat. sol. (a) 160, 487 (1997).3.0.CO;2-4>CrossRefGoogle Scholar
5. Schaible, D., Hirscher, M., Kronmhiller, H., Phil. Mag. Lett. 78, 121 (1998).CrossRefGoogle Scholar
6. , T.-S., Phys. Rev. 71, 533 (1947).Google Scholar
7. Schaible, D., doctoral thesis, Universität Stuttgart (1998).Google Scholar
8. Hirscher, M., Schweizer, E., Weller, M., Kronmtiller, H., Phil. Mag. Lett. 74, 189 (1996),Google Scholar
9. Weller, M., Hirscher, M., Schweizer, E., Kronmüller, H., J. Physique (IV) 6, C8231 (1996).Google Scholar
10. Granato, A., LOcke, K., J. Appl. Phys. 27, 583 (1956).CrossRefGoogle Scholar
11. Brotzen, F.R., Seeger, A., Acta metall. 37, 2985 (1989).Google Scholar
12. Fu, C.L., Ye, Y-Y, Yoo, M.H., Mat. Res. Soc. Proc. 288, 21 (1993).CrossRefGoogle Scholar
13. Hirscher, M., Walz, F., Weller, M., J. Physique (IV) 5, C7175 (1995); M. Weller ibid., 5, C7–199 (1995).Google Scholar
14. Weaver, M.L., Kaufman, M.I., Noebe, R.D., Intermetallics 4, 121; 593 (1996).CrossRefGoogle Scholar
15. Parthasarathi, A., Fraser, H.L., Phil. Mag. A 50, 89 (1984).CrossRefGoogle Scholar
16. Mishin, Y., Farkas, D., Phil. Mag. A 75, 187 (1997).Google Scholar
17. Schaible, D., Hirscher, M., Kronmtiller, H., Intermetallics, in press.Google Scholar
18. Sauthoff, G., in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Lui, C.T., Martin, P.L., Miracle, D.B., Nathal, M.V. (The Minerals, Metals & Materials Society, 1993) p. 845.Google Scholar