Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:23:07.719Z Has data issue: false hasContentIssue false

Interfacial Reactions of Mo with Al: Ion mixing Versus Thermal Annealing

Published online by Cambridge University Press:  26 February 2011

E. Ma
Affiliation:
116-81, California Institute of Technology, Pasadena, CA 91125
A. J. Brunner
Affiliation:
116-81, California Institute of Technology, Pasadena, CA 91125
T. W. Workman
Affiliation:
116-81, California Institute of Technology, Pasadena, CA 91125
C. W. Nieh
Affiliation:
116-81, California Institute of Technology, Pasadena, CA 91125
X.-A. Zhao
Affiliation:
116-81, California Institute of Technology, Pasadena, CA 91125
M-A. Nicolet
Affiliation:
116-81, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Interfacial reactions induced by ion beam mixing and furnace annealing in Al/Mo bilayers are investigated. The amount of interfacial ion m'xing, 4Dt, follows a linear dose dependence for irradiation temperatures ≤80 C. Below room temperature, the mixing efficiency, defined as d(4Dt)/dø, is temperature independent, and agrees fairly well with the prediction of the phenomenological model based on chemically biased diffusion in thermal spike. We conclude that thermal spike mixing dominates for Xe irradiation of Al/Mo at low temperatures. The mixing efficiency becomes temperature-dependent above room temperature with an apparent activation enthalpy of about 0.17±0.02eV. A layer of 15–20 at.% Mo forms by ion mixing, while oAl12 Mo forms upon thermal annealing in a nonuniform fashion starting at 500°C. Reaction of Mo with large-grained Al substrates shows the same nonuniform characteristics as in evaporated Al/Mo bilayers, implying a minor role of grain boundary effects. Oxygen gettered in the Mo film could be an important factor that influences the interfacial reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Colgan, E. and Mayer, J. W., J. Mater. Res. 1, 786 (1986).Google Scholar
2. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Meth. 182/183, 25 (1981).Google Scholar
3. Cheng, Y.-T., Workman, T. W., Johnson, W. L. and Nicolet, M-A., Mater. Res. Soc. Symp. Proc. 74, 419 (1987).Google Scholar
4. Workman, T. W., Cheng, Y.-T., Johnson, W. L. and Nicolet, M-A., Appl. Phys. Lett. 50, 1485 (1987).Google Scholar
5. Nastasi, M., Hung, L. S. and Mayer, J. W., Appl. Phys. Lett. 43, 831 (1983).Google Scholar
6. Biersack, J. and Haggmark, L. G., Nucl. Instrum. Meth. 174, 257 (1980).Google Scholar
7. Biersack, J. P. and Ziegler, J. F., in Ion Implantation Techniques, edited by Ryssel, H. and Glawisching, H. (Springer, Berlin, 1982).Google Scholar
8. Zhao, X.-A., So, F. and Nicolet, M-A., J. Appl. Phys. (in press).Google Scholar
9. Zhao, X.-A., Ma, E. and Nicolet, M-A., Mater. Lett. 5, 220 (1987).Google Scholar
10. Chu, W. K., Mayer, J. W. and Nicolet, M-A., in Backscattering Spectrometry (Academic, Orlando, FL, 1978), p. 50.Google Scholar
11. Paine, B. M. and Averback, R. S., Nucl. Instrum. Meth. Phys. Res. B7/8, 666 (1985).Google Scholar
12. Bomchil, G., Goeltz, G. and Torres, J., Thin Solid Films 140, 59 (1986).Google Scholar
13. Besenbacher, F., Bottiger, J., Nielsen, S. K. and Whitlow, H. J., Appl. Phys. A 29, 141 (1982).CrossRefGoogle Scholar
14. Cheng, Y.-T., Zhao, X.-A., Banwell, T., Workman, T. W., Nicolet, M-A. and Johnson, W.L., J. Appl. Phys. 60, 2515 (1986).Google Scholar
15. Averback, R. S., Thompson, L. J. Jr., Moyle, J., and Schalit, M., J. Appl. Phys. 53, 1342 (1982).Google Scholar
16. Peacock, A. T. and Dearnaley, G., Proc. 2nd Workshop on Ion Mixing and Surface Layer Alloying, eds. Follstaedt, D. M., Averback, R. S. and Nicolet, M-A., Pasadena, CA, USA, Jan. 1986.Google Scholar
17. Johnson, W. L., Cheng, Y.-T., van Rossum, M. and Nicolet, M-A., Nucl. Instrum. Meth. Phys. Res. B7/8, 657 (1985).Google Scholar
18. Singh, R. N., Brown, D. M., Kim, M. J. and Smith, G. A., J. Appl. Phys. 58, 12 (1985).Google Scholar
19. Hung, L. S., Nastasi, M., Gyulai, J. and Mayer, J. W., Appl. Phys. Lett. 42, 672 (1983).CrossRefGoogle Scholar
20. Ho, K.-T., Scott, D. M. and Nicolet, M-A., Thin Solid Films 127, 171 (1985).CrossRefGoogle Scholar