Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T05:30:52.205Z Has data issue: false hasContentIssue false

Interfacial Mixing in Epitaxial Co/Pt Superlattices: a Source of Magnetocrystalline Anisotropy

Published online by Cambridge University Press:  15 February 2011

R. F. C. Farrow
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose CA 95120–6099.
B. D. Hermsmeier
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose CA 95120–6099.
C. H. Lee
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose CA 95120–6099.
R. F. Marks
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose CA 95120–6099.
E. E. Marinero
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose CA 95120–6099.
C. J. Lin
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose CA 95120–6099.
C. J. Chien
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305–2205.
S. B. Hagstrom
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305–2205.
Get access

Abstract

We report the results of photoelectron forward scattering studies of Co-Pt interfaces during the growth of epitaxial superlattices by MBE. These studies reveal that the interfaces are not atomically abrupt but exhibit limited interdiffusion. The dependence of magnetic anisotropy on growth axis and the strong 2-fold in-plane anisotropy for [110] oriented superlattices suggests that magnetocrystalline anisotropy is a major factor in determining the anisotropy in Co/Pt superlatticcs. The possibility that this anisotropy may arise from a combination of structural defects and local ordering is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See for example the review by Bruno, P., Appl. Phys. 49, (1989).Google Scholar
2. Hashimoto, Shunichi, Ochiai, Y., Aso, K., J. Appi. Phys. 67, 2136 (1990).Google Scholar
3. Lee, C.H., Farrow, R.F.C., Lin, C.J., Marinero, E.E., Chien, C.J., Phys. Rev.B, 42, 11384 (1990).Google Scholar
4. Fadley, C.S., Bergström, S.A.L. Phys. Rev. Lett. 35A, 375 (1971).Google Scholar
5. Egelhoff, W.F. Jr., Phys. Rev. Lett. 59, 559 (1987);Google Scholar
Bullock, E.L. and Fadley, C.S., Phys. Rev. B31, 121291985).Google Scholar
1. See for example the review by Bruno, P., Appl. Phys. 49, (1989).Google Scholar
2. Hashimoto, Shunichi, Ochiai, Y., Aso, K., J. Appl. Phys. 67,2136 (1990).Google Scholar
3. Lee, C.H., Farrow, R.F.C., Lin, C.J., Marincro, E.E., Chien, C.J., Phys. Rev.B, 42, 11384 (1990).Google Scholar
4. Fadley, C.S., Bergström, S.A.L., Phys. Rev. Lett. 35A, 375 (1971).Google Scholar
5. Egelhoff, W.F. Jr., Phys. Rev. Lett. 59, 559 (1987);Google Scholar
Bullock, E.L. and Fadley, C.S., Phys. Rev. B31, 121291985).Google Scholar
6. Osterwalder, J., Stewart, E.A., Cyr, D., Fadley, C.S., Mustre de Leon, J., Rehr, J J., Phys. Rev. B 35, 9859 (1987).Google Scholar
7. Chambers, S.A., Anderson, S.B., Chen, H-W., Weaver, J.H., Phys. Rev.B35, 2592 (1987).Google Scholar
8. Li, H., Tonner, B.P., Phys. Rev. B 37, 3959 (1988).Google Scholar
9. Yan, X., Egami, T., Marinero, E.E., Farrow, R.F.C., Paper S 10.5, March 1991 Meeting of The American Physical Society.To be published in J. Appl. Phys.Google Scholar
10. Mezey, L.Z., Giber, J., J. Appl. Phys. 21, 1569 (1982).Google Scholar
11. Chien, C.J., Clemens, B.M., Hagstrom, S.B., Farrow, R.F.C., Lee, C.H., Marinero, E.E., Lin, C.J., Mat. Res. Soc. Symp. Proc., Spring 1991, Symposium S.Google Scholar
12. Chikazumi, S. in “Physics of magnetism”, Wiley, New York, (1964), Chapter 17, page 359.Google Scholar