Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T18:51:21.577Z Has data issue: false hasContentIssue false

Interfacial Ion Fluxes at Nanostructured Thin Films

Published online by Cambridge University Press:  11 February 2011

Nancy N. Kariuki
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902.
Jin Luo
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902.
Li Han
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902.
Mathew M. Maye
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902.
Melissa J. Patterson
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902.
Laura Moussa
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902.
Maria Hepel
Affiliation:
Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676
Chuan-Jian Zhong
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902.
Get access

Abstract

Thin films derived from nanocrystal cores and functionalized linkers provide large surface-to-volume ratio and three-dimensional ligand framework. This paper describes the results of an investigation of the interfacial ion fluxes associated with redox reactivity and structural properties of such films using cyclic voltammetry, electrochemical quartz-crystal nanobalance, surface infrared reflection spectroscopy, and X-ray photoelectron spectroscopy. Films from gold nanocrystals of 2 nm core sizes and 11-mercaptoundecanoic acid were studied as a model system. First, the film coated on electrode surface displays redox-like voltammetric waves characteristic of the deprotonation-reprotonation of the carboxylic acid groups in the nanostructured network. This process is accompanied by mass changes. Secondly, the film exhibits capability for the complexation of copper ions via the nanostructured carboxylate framework. This process is also accompanied by interfacial fluxes of electrolyte cations across the electrode | film | electrolyte interface which compensate electrostatically the fixed negative charges in the reduction process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shipway, N., Katz, E., Willner, I., ChemPhysChem, 1, 18 (2000).Google Scholar
2. Niemeyer, C. M., Angewandte Chemie - International Edition, 40, 4128 (2001).Google Scholar
3. Gutierrez, E., Miller, T. C., Gonzalez-Redondo, J. R., Holcombe, J. A., Environ. Sci. & Technol., 33, 1664 (1999).Google Scholar
4. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., Rudzinski, W. E., J. Controlled Release, 70, 1 (2001),Google Scholar
5. Hepel, M. and Mahdavi, F., Microchem. J., 56, 54 (1997).Google Scholar
6. Kariuki, N. N., Han, L., Luo, J., Nam, K. L., Patterson, M. J., Maye, M. M., Liu, G. J., Zhong, C. J., Langmuir, 18, 8255 (2002).Google Scholar
7. Bethell, D., Brust, M., Schiffrin, D. J., Kiely, C. J., J. Electroanal. Chem. 409, 137 (1996); J. Am. Chem. Soc., 120, 12367 (1998).Google Scholar
8. Zhong, C. J. and Maye, M. M., Advanced Materials, 13, 1507 (2001).Google Scholar
9. Hostetler, M. J., Green, S. J., Stokes, J. J., Murray, R. W., J. Am. Chem. Soc., 118, 4212 (1996);Google Scholar
Templeton, A. C., Hostetler, M. J., Kraft, C. T., Murray, R. W., J. Am. Chem. Soc., 120, 1906 (1998);Google Scholar
Templeton, A. C., Hostetler, M. J., Warmoth, E. K., Chen, S., Hartshorn, C. M., Krishnamurthy, V. M., Forbes, M. D. E., Murray, R. W., J. Am. Chem. Soc., 120, 4845 (1998).Google Scholar
10. Leibowitz, F. L., Zheng, W. X., Maye, M. M., Zhong, C. J., Anal. Chem., 71, 5076 (1999);. 72, 2190 (2000).Google Scholar
11. Han, L., Maye, M. M., Leibowitz, F. L., Ly, N. K., Zhong, C. J., J. Mater. Chem. 11, 1259 (2001).Google Scholar
12. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., Whyman, R., J. Chem. Soc., Chem. Commun., 801 (1994).Google Scholar
13. White, H. S., Peterson, J. D., Cui, Q., Stevenson, K. J., J. Phys. Chem. B., 102, 2930. (1998).Google Scholar