Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T10:26:09.084Z Has data issue: false hasContentIssue false

Interface and Luminescence Properties of Pulsed Laser Deposited MgxZn1-xO/ZnO Quantum Wells with Strong Confinement

Published online by Cambridge University Press:  01 February 2011

Susanne Heitsch
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Linnéstr. 5, Leipzig, 04103, Germany, +49-(0)341-97-32672, +49-(0)341-97-32668
Gregor Zimmermann
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Linnéstr. 5, Leipzig, 04103, Germany
Alexander Müller
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Linnéstr. 5, Leipzig, 04103, Germany
Jörg Lenzner
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Linnéstr. 5, Leipzig, 04103, Germany
Holger Hochmuth
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Linnéstr. 5, Leipzig, 04103, Germany
Gabriele Benndorf
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Linnéstr. 5, Leipzig, 04103, Germany
Michael Lorenz
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Linnéstr. 5, Leipzig, 04103, Germany
Marius Grundmann
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Linnéstr. 5, Leipzig, 04103, Germany
Get access

Abstract

MgxZn1-xO/ZnO/MgxZn1-xO quantum wells (QWs) (0.12 ≤ x ≤ 0.15) have been grown on a-plane sapphire substrates by pulsed laser deposition. The nominal ZnO well layer thickness lies between 1.2 nm and 6 nm. Atomic force microscopy (AFM) investigations at ZnO/MgxZn1−xO heterostructures show the film-like structure of the ZnO layers. Their root mean square surface roughness of ∼ 0.5 nm gives information about the interface roughness in the QWs. AFM results from the MgxZn1−xO barrier layers show the same surface structure and roughness. We confirmed the lateral homogeneity of the Mg distribution in the MgxZn1−xO barrier layers by scanning cathodoluminescence measurements. The QWs show a bright and laterally homogeneous luminescence, suggesting good crystalline quality of the ZnO wells. The measured QW photoluminescence energies agree well with calculated values and display the presence of the quantum-confined Stark effect. As a result of quantum confinement a high-energy shift of the ZnO excitonic photoluminescence of 222 meV is observed in the thinnest QW.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Makino, T., Superlattice. Microst. 38, 231 (2005) and references therein.Google Scholar
2. Morhain, C., Bretagnon, T., Lefebvre, P., Tang, X., Valvin, P., Guillet, T., Gil, B., Taliercio, T., Teisseire-Doninelli, M., Vinter, B., Deparis, C., Phys. Rev. B 72, 241305 (R) (2005).Google Scholar
3. Morhain, C., Tang, X., Teisseire-Doninelli, M., Lo, B., Laügt, M., Chauveau, J.-M., Vinter, B., Tottereau, O., Vennéguès, P., Deparis, C., Neu, G., Superlattice. Microst. 38, 455 (2005).Google Scholar
4. Heitsch, S., Benndorf, G., Zimmermann, G., Schulz, C., Spemann, D., Hochmuth, H., Schmidt, H., Nobis, Th., Lorenz, M., Grundmann, M., Appl. Phys. A (in press), and references therein.Google Scholar
5. Ohtomo, A., Kawasaki, M., Ohkubo, I., Koinuma, H., Yasuda, T., Segawa, Y., Appl. Phys. Lett. 75, 980 (1999).Google Scholar
6. Sadofev, S., Blumstengel, S., Cui, J., Puls, J., Rogaschewski, S., Schäfer, P., Sadofyev, Y. G., Henneberger, F., Appl. Phys. Lett. 87, 091903 (2005).Google Scholar
7. Krishnamoorthy, S., Iliadis, A.A., Inumpudi, A., Choopun, S., Vispute, R.D., Venkatesan, T., Solid-State Electron. 46, 1633 (2002).Google Scholar
8. Muth, J.F., Teng, C.W., Sharma, A.K., Kvit, A., Kolbas, R.M., Narayan, J., Mat. Res. Soc. Symp. 617, J6.7 (2000).Google Scholar
9. Heitsch, S., Zimmermann, G., Fritsch, D., Sturm, C., Schmidt-Grund, R., Schulz, C., Hochmuth, H., Spemann, D., Benndorf, G., Rheinländer, B., Nobis, Th., Lorenz, M., and Grundmann, M., J. Appl. Phys. (in press).Google Scholar
10. Coli, G., Bajaj, K. K., Appl. Phys. Lett. 78, 2861 (2001).Google Scholar
11. Button, K. J., Cohn, D. R., von Ortenbert, M., Lax, B., Mollwo, E., Helbig, R., Phys. Rev. Lett. 28, 1637 (1972).Google Scholar
12. Hümmer, K., Phys. Status Solidi B 56, 249 (1973).Google Scholar