Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T09:00:29.226Z Has data issue: false hasContentIssue false

Interdiffused InGaAsP Quantum Dots Lasers on GaAs by Metal Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Ronald A. Arif
Affiliation:
[email protected], Lehigh University, Department of Electrical and Computer Engineering, 7 Asa Drive, Sinclair Lab Rm 218, Bethlehem, Pennsylvania, 18015, United States, (610) 758-4326, (610) 758-2605
Nam-Heon Kim
Affiliation:
[email protected], University of Wisconsin-Madison, Department of Electrical and Computer Engineering, United States
Luke J. Mawst
Affiliation:
[email protected], University of Wisconsin-Madison, Department of Electrical and Computer Engineering, United States
Nelson Tansu
Affiliation:
[email protected], Lehigh University, Department of Electrical and Computer Engineering, United States
Get access

Abstract

Self-assembled InGaAs quantum dots (QD) grown by metal organic chemical vapor deposition (MOCVD) have a natural peak emission wavelength around 1150-1200-nm due to its specific composition, shapes, and sizes. In this work, a new method to engineer the emission wavelength capability of MOCVD-grown InGaAs QD on GaAs to ∼1000-nm by utilizing interdiffused InGaAsP QD has been demonstrated. Incorporation of phosphorus species from the GaAsP barriers into the MOCVD-grown self-assembled InGaAs QD is achieved by interdiffusion process. Reasonably low threshold characteristics of ∼ 200-280 A/cm2 have been obtained for interdiffused InGaAsP QD lasers emitting at 1040-nm, which corresponds to blue-shift of ∼ 85-90-nm in comparison to that of unannealed InGaAs QD laser.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bimberg, D., Grundman, M., Ledentsov, N.N., Quantum Dot Heterostructures, Wiley (1999).Google Scholar
2. Sumpf, B., Deubert, S., Erbert, G., Fricke, J., Reithmaier, J.P., Forchel, A., Staske, R., and Tränkle, G., Electron. Lett., 39, 1655 (2003).Google Scholar
3. Schekin, O.B., Deppe, D. G., Appl. Phys. Lett., 80, 3277 (2002).Google Scholar
4. Kovsh, A.R., Maleev, N.A., Zhukov, A.E., Mikhrin, S.S., Vasil'ev, A.P., Semenov, E.A., Shernyakov, Yu M., Maximov, M.V., Livshits, D.A., Ustinov, V.M., Ledentsov, N.N., Bimberg, D., Alferov, Zh. I., J. Cryst. Growth, 251, 729 (2003).Google Scholar
5. Ledentsov, N., Kovsh, A.R., Zhukov, A.E., Maleev, N.A., Mikhrin, S.S., Vasil'ev, A.P., Semenova, E.S., Maximov, M.V., Shernyakov, Yu.M., et al. , Electron. Lett., 39, 1126 (2003).Google Scholar
6. Sellin, R. L., Ribbat, Ch., Grundmann, M., Ledentsov, N. N., and Bimberg, D., Appl. Phys. Lett., 78, 1207 (2000).Google Scholar
7. Tatebayashi, J., Hatori, N., Kakuma, H., Ebe, H., Sudo, H., Kuramata, A., Nakata, Y., Sugawara, M., and Arakawa, Y., Electron. Lett., 39, 1130 (2003).Google Scholar
8. Kim, N. H., Ramamurthy, P., Mawst, L. J., Kuech, T. F., Modak, P., Goodnough, T. J., Forbes, D. V., Kanskar, M., J. Appl. Phys., 97, 093518–1 (2005).Google Scholar
9. Fu, L., Lever, P., Tan, H. H., Jagadish, C., Reece, P., Gal, M., Appl. Phys. Lett., 82, 2613 (2003).Google Scholar
10. Heinrichsdorff, F., Krost, A., Bimberg, D., Kosogov, A. O. and Werner, P., Appl. Surf. Sci., 123/124, 725 (1998).Google Scholar
11. Steimetz, E.L., Wehnert, T., Kirmse, H., Poser, F., Zettler, J.-T., Neumann, W., Richter, W., J. Cryst. Growth, 221, 592 (2000).Google Scholar