Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T21:27:25.010Z Has data issue: false hasContentIssue false

Integration of InGaN-based Optoelectronics with Dissimilar Substrates by Wafer Bonding and Laser Lift-off

Published online by Cambridge University Press:  21 March 2011

William S. Wong
Affiliation:
XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
Michael Kneissl
Affiliation:
XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
David W. Treat
Affiliation:
XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
Mark Teepe
Affiliation:
XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
Naoko Miyashita
Affiliation:
XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
Noble M. Johnson
Affiliation:
XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
Get access

Abstract

InGaN-based optoelectronics have been integrated with dissimilar substrate materials using a novel thin-film laser lift-off process. By employing the LLO process with wafer-bonding techniques, InGaN-based light emitting diodes (LEDs) have been integrated with Si substrates, forming vertically structured LEDs. The LLO process has also been employed to integrate InGaN-based laser diodes (LDs) with Cu and diamond substrates. Separation of InGaN-based thin-film devices from their typical sapphire growth substrates is accomplished using a pulsed excimer laser in the ultraviolet regime incident through the transparent substrate. Characterization of the LEDs and LDs before and after the sapphire substrate removal revealed no measurable degradation in device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matushita, T., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K. Jpn. J. Appl. Phys., Part 2 37 L627 (1998).Google Scholar
2. Kelly, M.K., Ambacher, O., Dimitrov, R., Handschuh, R., and Stutzmann, M., Phys. Stat. Sol. (A) 159 R3 (1997).Google Scholar
3. Wong, W.S., Sands, T., and Cheung, N.W., Appl. Phys. Lett. 72 599 (1998).Google Scholar
4. Wong, W.S., Krüger, J., Cho, Y., Linder, B.P., Weber, E.R., Cheung, N.W., and Sands, T., Proceedings of the Symposium on LED for Optoelectronic Applications and the 28th State of the Art Programs on Compound Semiconductors 98–2 377 (1999)Google Scholar
5. Wong, W.S., Wengrow, A.B., Cho, Y., Salleo, A., Quitoriano, N.J., Cheung, N.W., and Sands, T., J. Electron. Mater. 28 1409 (1999).Google Scholar
6. Wong, W.S., Cheung, N.W., Sands, T., Kneissl, M., Bour, D.P., Mei, P., Romano, L.T., and Johnson, N.M., Appl. Phys. Lett. 75 1360 (1999).Google Scholar
7. Kelly, M.K., Ambacher, O., Dimitrov, R., Angerer, R.H., Handschuh, R., and Stutzmann, M., Mat. Res. Soc. Symp. Proc. 482 973 (1998).Google Scholar
8. Song, Y.K., Diagne, M., Zhou, H., Nurmikko, A.V., Carter-Coman, C., Kern, R.S., Kish, F.A., and Krames, M.R., Appl. Phys. Lett. 74 3720 (1999).Google Scholar
9. Wong, W.S., Cheung, N.W., Sands, T., Kneissl, M., Bour, D.P., Mei, P., Romano, L.T., and Johnson, N.M, Appl. Phys. Lett. 77, 2822 (2000).Google Scholar
10. Kelly, M.K., Vaudo, R.P., Phanse, V.M., L. Gö rgens, Ambacher, O., and Stutzmann, M., Jpn. J. Appl. Phys. Part 2 38, L217 (1999).Google Scholar
11. Dalgleish, B.J., Nakashima, K., Locatelli, M.R., Tomsia, A.P., and Glaeser, A.M. Ceramics International 23, 313 (1997).Google Scholar
12. Kneissl, M., Hofstetter, D., Bour, D.P., Donaldson, R., Walker, J., and Johnson, N.M., J. Cryst. Growth 189/190, 846849 (1998).Google Scholar
13. Kneissl, M., Bour, D.P., Krusor, B.S., Romano, L.T., Johnson, N.M., McCluskey, M., Goetz, W., Bringans, R.D., SPIE Proceedings 3279, 6976 (1998).Google Scholar
14. Nakumura, S., Senoh, M., Iwasa, N., and Nagahama, S.I., Appl. Phys. Lett. 67, 1868 (1995).Google Scholar
15. Guha, S. and Bojarczuk, N.A., Appl. Phys. Lett. 72, 415 (1997).Google Scholar
16. Tran, C.A., Osinski, A., Karlicek, R.F. Jr., and Berishev, I., Appl. Phys. Lett. 75, 1494 (1999).Google Scholar
17. Yang, J.W., Lunev, A., Simin, G., Chitnis, A., Shatalov, M., Khan, M. Asif, Nostrand, J.E. Van, and Gaska, R., Appl. Phys. Lett. 76, 273 (2000)Google Scholar
18. Nakamura, S., J. Vac. Sci. Technol. A 13, 705 (1995).Google Scholar
19. Kneissl, M., Bour, D.P., Romano, L.T., Walle, C.G. van de, Northrup, J.E., Wong, W.S., Treat, D.W., Teepe, M., Schmidt, T., Johnson, N.M., Appl. Phys. Lett. 77, 1931 (2000).Google Scholar
20. Kneissl, M., Wong, W.S., Treat, D.W., Teepe, M., Miyashita, N., Johnson, N.M., submitted to IEEE J. Sel. Top. Quantum Eletron. (2001).Google Scholar
21. Wong, W.S., Kneissl, M., Mei, P., Treat, D.W., Teepe, M., and Johnson, N.M., Appl. Phys. Lett. 78, 1198 (2001).Google Scholar
22. Wong, W.S., Kneissl, M., Mei, P., Treat, D.W., Teepe, M., and Johnson, N.M., Jpn. J. Appl. Phys., Part 2 39, L1203 (2000).Google Scholar