Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:56:36.620Z Has data issue: false hasContentIssue false

Instabilities, Elasticity, and Wetting Effect in Multilayer Heteroepitaxial Growth

Published online by Cambridge University Press:  01 February 2011

Zhi-Feng Huang
Affiliation:
School of Computational Science and Information Technology, Florida State University, Tallahassee, FL 32306–4120, U.S.A.; E-mail: [email protected]
Rashmi C. Desai
Affiliation:
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada; E-mail: [email protected]
Get access

Abstract

For multilayer semiconductor films comprising various material layers, the coupling of elastic states in different layers as well as the nonequilibrium nature of the growing process are essential in understanding the surface and interface morphological instability and hence the growth mechanisms of nanostructures in the overall film. We present the theoretical work on the stress-driven instabilities during the heteroepitaxial growth of multilayers, based on the elastic analysis and the continuous nonequilibrium model. We develop a general theory which determines the morphological evolution of surface profile of the multilayer system, and then apply the results to two types of periodic structures that are being actively investigated: alternating tensile/compressive and strained/spacer multilayers. The wetting effect, which arises from the material properties changing across layer-layer interfaces, is incorporated. It exhibits a significant influence of stabilization on film morphology, particularly for the short-period superlattices. Our results are consistent with the experimental observations in AlAs/InAs/InP(001) and Ge/Si(001) multilayer structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teichert, C., Phys. Rep. 365, 335 (2002).Google Scholar
2. Sutter, P. and Lagally, M.G., Phys. Rev. Lett. 84, 4637 (2000);Google Scholar
Tromp, R.M., Ross, F.M., and Reuter, M.C., Phys. Rev. Lett. 84, 4641 (2000).Google Scholar
3. Floro, J.A., Chason, E., Twesten, R.D., Hwang, R.Q., and Freund, L.B., Phys. Rev. Lett. 79, 3946 (1997).Google Scholar
4. Cheng, K.Y., Hsieh, K.C., and Baillargeon, J.N., Appl. Phys. Lett. 60, 2892 (1992).Google Scholar
5. Mirecki Millunchick, J., Twesten, R.D., Follstaedt, D.M., Lee, S.R., Jones, E.D., Zhang, Y., Ahrenkiel, S.P., and Mascarenhas, A., Appi. Phys. Lett. 70, 1402 (1997).Google Scholar
6. Ahrenkiel, S.P., Norman, A.G., Al-Jassim, M.M., Mascarenhas, A., Mirecki Millunchick, J., Twesten, R.D., Lee, S.R., Follstaedt, D.M., and Jones, E.D., J. Appl. Phys. 84, 6088 (1998).Google Scholar
7. Twesten, R.D., Follstaedt, D.M., Lee, S.R., Jones, E.D., Reno, J.L., Mirecki Millunchick, J., Norman, A.G., Ahrenkiel, S.P., and Mascarenhas, A., Phys. Rev. B 60, 13619 (1999).Google Scholar
8. Norman, A.G., Ahrenkiel, S.P., Moutinho, H., Ballif, C., Al-Jassim, M.M., Mascarenhas, A., Follstaedt, D.M., Lee, S.R., Reno, J.L., Jones, E.D., Mirecki Millunchick, J., and Twesten, R.D., Mater. Res. Soc. Symp. Proc. 583, 297 (2000).Google Scholar
9. Norman, A.G., Moutinho, H.R., Al-Jassim, M.M., Mascarenhas, A., Lee, S.R., Mirecki, J. Millunchick, , Reno, J.L., and Follstaedt, D.M., preprint.Google Scholar
10. Li, J.H., Holy, V., Meduna, M., Moss, S.C., Norman, A.G., Mascarenhas, A., and Reno, J.L., Phys. Rev. B 66, 115312 (2002).Google Scholar
11. Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N.P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
12. Nakata, Y., Sugiyama, Y., Futatsugi, T., and Yokoyama, N., J. Cryst>. Growth 175/176, 713 (1997)..+Growth+175/176,+713+(1997).>Google Scholar
13. Tersoff, J., Teichert, C., and Lagally, M.G., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
14. Schmidt, O.G., Kienzle, O., Hao, Y., Eberl, K., and Ernst, F., Appl. Phys. Lett. 74, 1272 (1999).Google Scholar
15. Le Thanh, V., Yam, V., Boucaud, P., Zheng, Y., and Bouchier, D., Thin Solid Films 369, 43 (2000).Google Scholar
16. Asaro, R.J. and Tiller, W.A., Metall. Trans. 3, 1789 (1972);Google Scholar
Grinfeld, M.A., Sov. Phys. Dokl. 31, 831 (1987).Google Scholar
17. Srolovitz, D.J., Acta Metall. 37, 621 (1989).Google Scholar
18. Spencer, B.J., Voorhees, P.W., and Davis, S.H., Phys. Rev. Lett. 67, 3696 (1991); J. Appl. Phys. 73, 4955 (1993).Google Scholar
19. Tersoff, J. and LeGoues, F.K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
20. Tersoff, J., Phys. Rev. Lett. 87, 156101 (2001).Google Scholar
21. Perovié, D.D., Bahierathan, B., Lafontaine, H., Houghton, D.C., and McComb, D.W., Physica A 239, 11 (1997).Google Scholar
22. Cahn, J.W., Acta. Metall. 9, 795 (1961); Trans. Metall. Soc. AIME 242, 166 (1968).Google Scholar
23. Xie, Y.H., Gilmer, G.H., Roland, ?C., Silverman, P.J., Buratto, S.K., Cheng, J.Y., Fitzgerald, E.A., Kortan, A.R., Schuppler, S., Marcus, M.A., and Citrin, P.H., Phys. Rev. Lett. 73, 3006 (1994).Google Scholar
24. Walther, T., Humphreys, C.J., and Cullis, A.G., Appi. Phys. Lett. 71, 809 (1997).Google Scholar
25. Okada, T., Weatherly, G.C., and McComb, D.W., J. Appi. Phys. 81, 2185 (1997).Google Scholar
26. Guyer, J.E., Barnett, S.A., and Voorhees, P.W., J. Crystal Growth 217, 1 (2000).Google Scholar
27. Guyer, J.E. and Voorhees, P.W., Phys. Rev. Lett. 74, 4031 (1995); Phys. Rev. B 54, 11710 (1996).Google Scholar
28. Léonard, F. and Desai, R.C., Phys. Rev. B 57, 4805 (1998); Appl. Phys. Lett. 74, 40 (1999).Google Scholar
29. Huang, Z.F. and Desai, R.C., Phys. Rev. B 65, 205419 (2002); 65, 195421 (2002).Google Scholar
30. Venezuela, P. and Tersoff, J., Phys. Rev. B 58, 10871 (1998).Google Scholar
31. Spencer, B.J., Voorhees, P.W., and Tersoff, J., Appi. Phys. Lett. 76, 3022 (2000); Phys. Rev. B 64, 235318 (2001).Google Scholar
32. Liu, F., Davenport, S.E., Evans, H.M., and Lagally, M.G., Phys. Rev. Lett. 82, 2528 (1999).Google Scholar
33. Shilkrot, L.E., Srolovitz, D.J., and Tersoff, J., Appl. Phys. Lett. 77, 304 (2000); Phys. Rev. B 62, 8397 (2000); 67, 249901(E) (2003).Google Scholar
34. Huang, Z.F. and Desai, R.C., Phys. Rev. B 67, 075416 (2003).Google Scholar
35. Huang, Z.F., Kandel, D., and Desai, R.C., Appi. Phys. Lett. 82, 4705 (2003).Google Scholar
36. Eisenberg, H.R. and Kandel, D., Phys. Rev. Lett. 85, 1286 (2000); Phys. Rev. B 66, 155429 (2002).Google Scholar