Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:59:39.078Z Has data issue: false hasContentIssue false

In-situDeposition of Superconducting MgB2 Films

Published online by Cambridge University Press:  18 March 2011

N. Stelmashenko
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE
K. A. Yates
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE
V. N. Tsaneva
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE
M. Kambara
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE
D. A. Cardwell
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE
M. G. Blamire
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE
Get access

Abstract

The discovery of superconductivity in MgB2 has been followed by many papers reporting attractive thin film properties. In most cases these have involved the deposition of precursor films followed by in-situ or ex-situ post annealing in a Mg-rich atmosphere. Although simple device structures have been fabricated from such films, it is desirable for a number of reasons that a heterostructure device technology be developed. Heterostructure growth is likely to require in-situ growth, preferably without post-annealing. To achieve this, low oxygen and high Mg background pressures are required in the vicinity of the sample. By using a novel heater geometry we have been able to grow superconducting MgB2 films from Mg-rich targets at temperatures below 500 °C. This paper reports the growth method, and structural and electrical characterization of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature 410 6364 (2001).Google Scholar
2. Wang, S.F., Dai, S.Y., Zhou, Y.L., Chen, Z.H., Cui, D.F., Yu, J.D., He, M., Lu, H.B., and Yang, G.Z., Supercond. Science & Technology 14 885 (2001).Google Scholar
3. Kang, W.N., Kim, H.J., Choi, E.M., Jung, C.U., and Lee, S.I., Science 292 15211523 (2001).Google Scholar
4. Ueda, K. and Naito, M., Appl. Phys. Lett. 79 20462048 (2001).Google Scholar
5. Ermolov, S. N., Indenbom, M. V., Rossolenko, A. N., Bdikin, I. K., Uspenskaya, L. S., Stepakov, N. S., and Glebovskii, V. G., JETP Lett. 73 557561 (2001).Google Scholar
6. Paranthaman, M., Cantoni, C., Zhai, H. Y., Christen, H. M., Aytug, T., Sathyamurthy, S., Specht, E. D., Thompson, J. R., Lowndes, D. H., Kerchner, H. R., and Christen, D. K., Appl. Phys. Lett. 78 36693671 (2001).Google Scholar
7. Buzea, C. and Yamashita, T., Supercond. Science & Technology 14 R115 (2001).Google Scholar
8. Burnell, G., Kang, D.-J., Lee, H.N., Moon, S.H., Oh, B., and Blamire, M.G., Appl. Phys. Lett. 79 34643466 (2001).Google Scholar
9. Fan, Z. Y., Hinks, D. G., Newman, N., and Rowell, J. M., Appl. Phys. Lett. 79 87 (2001).Google Scholar
10. Berenov, A., Lockman, Z., Qi, X., Bugoslavsky, Y., Cohen, L.F., Jo, M.-H., Stelmashenko, N.A., Tsaneva, V.N., Kambara, M., Babu, N. Hari, Cardwell, D.A., Blamire, M. G., and MacManus-Driscoll, J. L., Appl. Phys. Lett. in press (2001).Google Scholar
11. Rogardo, N., Hayward, M. A., Regan, K. A., Wang, Y., Ong, N. P., Rowell, J. M., and Cava, R. J., cond-mat/0107534 (2001).Google Scholar