Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:33:24.284Z Has data issue: false hasContentIssue false

In-situ Study of Electromigration-induced Grain Rotation in Pb-free Solder Joint by Synchrotron Microdiffraction

Published online by Cambridge University Press:  01 February 2011

Kai Chen
Affiliation:
[email protected], LBNL, ALS, Berkeley, California, United States
Nobumichi Tamura
Affiliation:
[email protected], LBNL, ALS, Berkeley, California, United States
King-Ning Tu
Affiliation:
[email protected], UCLA, MSE, Los Angeles, California, United States
Get access

Abstract

The rotation of Sn grains in Pb-free flip chip solder joints hasn't been reported in literature so far although it has been observed in Sn strips. In this letter, we report the detailed study of the grain orientation evolution induced by electromigration by synchrotron based white beam X-ray microdiffraction. It is found that the grains in solder joint rotate more slowly than in Sn strip even under higher current density. On the other hand, based on our estimation, the reorientation of the grains in solder joints also results in the reduction of electric resistivity, similar to the case of Sn strip. We will also discuss the reason why the electric resistance decreases much more in strips than in the Sn-based solders, and the different driving force for the grain growth in solder joint and in thin film interconnect lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Valek, B. C., Bravman, J. C., Tamura, N., MacDowell, A. A., Celestre, R. S., Padmore, H. A., Spolenak, R., Brown, W. L., Batterman, B. W., and Patel, J. R., Appl. Phys. Lett. 81, 4168 (2002)Google Scholar
2. Valek, B. C., Tamura, N., Spolenak, R., Caldwell, W. A., MacDowell, A. A., Celestre, R. S., Padmore, H. A., Bravman, J. C., Batterman, B. W., Nix, W. D., and Patel, J. R., J. Appl. Phys. 94, 3757 (2003)Google Scholar
3. Chen, K., Tamura, N., Valek, B. C., and Tu, K. N., J. Appl. Phys. 104, 013513 (2008)Google Scholar
4. Budiman, A. S., Nix, W. D., Tamura, N., Valek, B. C., Gadre, K., Maiz, J., Spolenak, R., and Patel, J. R., Appl. Phys. Lett. 88, 233515 (2006)Google Scholar
5. Wu, A. T., Tu, K. N., Lloyd, J. R., Tamura, N., Valek, B. C., and Kao, C. R., Appl. Phys. Lett. 85, 2490 (2004)Google Scholar
6. Wu, A. T., Gusak, A. M., Tu, K. N., and Kao, C. R., Appl. Phys. Lett. 86, 241902 (2005)Google Scholar
7. Wu, A. T. and Hsieh, Y. C., Appl. Phys. Lett. 92, 121921 (2008)Google Scholar
8. Tu, K. N., J. Appl. Phys. 94, 5451 (2003)Google Scholar
9. Lloyd, J. R., J. Appl. Phys. 94, 6483 (2003)Google Scholar
10. Huang, A. T., Tu, K. N., and Lai, Y. S., J. Appl. Phys. 100, 033512 (2006)Google Scholar
11. Tamura, N., Spolenak, R., Valek, B. C., Manceau, A., Meier Chang, M., Celestre, R. S., MacDowell, A. A., Padmore, H. A. and Patel, J. R., Rev. Sci. Instrum. 73, 1369 (2002)Google Scholar
12. Tamura, N., Padmore, H. and Patel, J. R., Mater. Sci. Eng., A 399, 92 (2005)Google Scholar
13. Hsiao, H.-Y. and Chen, C., Appl. Phys. Lett. 90, 152105 (2007)Google Scholar
14. Yang, D., Wu, B. Y., Chan, Y. C. and Tu, K. N., J. Appl. Phys. 102, 043502 (2007)Google Scholar
15. Yeh, E. C. C. and Tu, K. N., J. Appl. Phys. 88, 5680 (2000)Google Scholar
16. Nye, J. F., Physical properties of crystals: their representation by tensors and matrices (the University Press, Oxford, 1979)Google Scholar