Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T07:56:35.085Z Has data issue: false hasContentIssue false

Inlayed “Atom-like Three-Dimensional Photonic Crystal Structures Created with Femtosecond Laser Microfabrication

Published online by Cambridge University Press:  10 February 2011

Hong-Bo Sun
Affiliation:
Satellite Venture Business Laboratory, The University of Tokushima, 2-1 Minamijyosanjima, Tokushima 770-8506, Japan
Ying Xu
Affiliation:
Department of Ecosystem Engineering, Graduate School of Engineering, The University of Tokushima, 2-1 Minamijyosanjima, Tokushima 770-8506, Japan
Kai Sun
Affiliation:
Department of Ecosystem Engineering, Graduate School of Engineering, The University of Tokushima, 2-1 Minamijyosanjima, Tokushima 770-8506, Japan
Saulius Juodkazis
Affiliation:
Satellite Venture Business Laboratory, The University of Tokushima, 2-1 Minamijyosanjima, Tokushima 770-8506, Japan
Mitsuru Watanabe
Affiliation:
Department of Ecosystem Engineering, Graduate School of Engineering, The University of Tokushima, 2-1 Minamijyosanjima, Tokushima 770-8506, Japan
Shigeki Matsuo
Affiliation:
Department of Ecosystem Engineering, Graduate School of Engineering, The University of Tokushima, 2-1 Minamijyosanjima, Tokushima 770-8506, Japan
Hiroaki Misawa*
Affiliation:
Department of Ecosystem Engineering, Graduate School of Engineering, The University of Tokushima, 2-1 Minamijyosanjima, Tokushima 770-8506, Japan
Junji Nishii
Affiliation:
Optical Materials Division, Osaka National Research Institute, 1-8-31 Midorigaoka, Iketa, Osaka 563-8577, Japan
*
Correspondence should be addressed to [email protected].
Get access

Abstract

Ultrashort laser pulses are utilized for fabrication of three-dimensional (3D) photonic crystals based on a multiphoton absorption process. The basic idea is, when a femtosecond laser pulse is tightly focused into some transparent media, a submicrometer hole will be generated due to microexplosion. By arraying these holes the same way as atoms in general solid crystals, 3D photonic lattices are achieved. Pronounced photonic bandgap effect shows that this technique is promising for tailoring arbitrary-lattice photonic crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yablonovitch, E., Phys. Rev. Lett. 58, p. 2059 (1987).Google Scholar
2. John, S., Phys. Rev. Lett. 58, p. 2486 (1987).10.1103/PhysRevLett.58.2486Google Scholar
3. Joannopoulos, J. D., Villeneuve, P. R., and Fan, S., Nature 386, p. 143 (1997).Google Scholar
4. Photonic band gap materials (ed. Soukoulis, C., NATO ASI Ser. E Vol. 315, Kluwer, Dordrecht, 1996).10.1007/978-94-009-1665-4Google Scholar
5. Gourley, P. L., Wendt, J. R., Vawter, G. A., Brennan, T. M. and Hammons, B. E., Appl. Phys. Lett. 64, p. 687 (1994).Google Scholar
6. Yablonovitch, E., Gmitter, T. J. and Leung, K. M., Phys. Rev. Lett. 67, p. 2295 (1991).Google Scholar
7. Tarhan, Í. Í., Zinkin, M. P., and Waston, G. H., Opt. Lett. 20, p. 1571 (1995).Google Scholar
8. Fukuda, K., Sun, H. B., Matsuo, S., and Misawa, H., Jpn. J. Appi. Phys. 37, p. L508 (1998).10.1143/JJAP.37.L508Google Scholar
9. Grüning, U., Lehmann, V., Engelhardt, C. M., Appl. Phys. Lett. 66, p. 3254 (1995).Google Scholar
10. Sun, H. -B., Matsuo, S. and Misawa, H., Appl. Phys. Lett. 74, p. 786 (1999).Google Scholar
11. Cumpston, B. H. et al. , Two-photon polymerization initiators for three dimensional optical data storage and microfabrication, Nature, 398, 5154 (1999).10.1038/17989Google Scholar
12. Glezer, E. N. and Mazur, E., Appl. Phys. Lett. 71, p. 882 (1997).Google Scholar
13. Glezer, E. N., Milosavljevic, M., Huang, L., Finalay, R. J., Her, T.-H., Callan, J. P., and Mazur, E., Opt. Lett. 21, p. 2023 (1996).Google Scholar
14 Subramania, G., Biswas, R., Sigalas, M. M., and Ho, K.-M., Appl. Phys. Lett. 74, p. 3933 (1995).Google Scholar
15. Yablonovitch, E., and Gmitter, T. J., Phys. Rev. Lett. 67, p. 2295 (1991).Google Scholar
16. Trof, W. J., Thomas, M. E., and Harris, T. J., in Handbook of Optics (II) (ed. Bass, M., McGraw-Hill, Inc, New York, 1995).Google Scholar