Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T20:36:27.101Z Has data issue: false hasContentIssue false

Influence of The Alloy Composition on The Magnetic Properties of Nanocrystalline Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo)

Published online by Cambridge University Press:  21 February 2011

M. Kopcewicz
Affiliation:
Institute of Electronic Materials Technology, Wólczyńska 133, PL 01-919 Warsaw, Poland
A. Grabias
Affiliation:
Institute of Electronic Materials Technology, Wólczyńska 133, PL 01-919 Warsaw, Poland
B. Idzikowski
Affiliation:
Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, PL 60-179 Poznań, Poland
Get access

Abstract

Formation of the nanocrystalline bcc Fe phase due to thermal treatment of the amorphous Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo) precursors is studied by the Mössbauer and differential scanning calorimetry techniques. The dependence of the formation of the bcc Fe phase on the alloy composition is discussed. In order to determine the optimal soft magnetic properties of these nanocrystalline alloys the rf-Mössbauer technique is used in which rf collapse effect induced by a radio-frequency (rf) magnetic field is employed. It was found that anisotropy fields in the nanocrystalline phase were smaller in Nb- and Mo-containing alloys as compared to the alloys which contain Ti or Ta. Variations of the anisotropy field vs. alloy composition and annealing temperature are discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Suzuki, K., Makino, A., Inoue, A., Masumoto, T., J. Appl. Phys. 74, 3316 (1993).Google Scholar
2. Makino, A., Hanai, T., Inoue, A., Masumoto, T., Mater. Sci. Eng. A226–228, 594 (1997).Google Scholar
3. Yoshizawa, Y., Oguma, S., Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).Google Scholar
4. Herzer, G., Phys. Scr. T 49, 307 (1993).Google Scholar
5. Pfeiffer, L., in Mossbauer Effect Methodology, edited by Gruvermann, I.J., (Plenum, New York, 1972), Vol. 7, p. 263.Google Scholar
6. Kopcewicz, M., Structural Chem. 2, 313 (1991).Google Scholar
7. Kopcewicz, M., Jagielski, J., Graf, T., Fricke, M., Hesse, J., Hyperfine Inter. 94, 2223 (1994).Google Scholar
8. Kopcewicz, M., Grabias, A., Nowicki, P., Williamson, D.L., J. Appl. Phys. 79, 993 (1996).Google Scholar
9. Kopcewicz, M. and Grabias, A., J. Appl. Phys. 80, 3422 (1996).Google Scholar
10. Kopcewicz, M., Grabias, A., Williamson, D.L., J. Appl. Phys. 82, 1747 (1997).Google Scholar
11. Kopcewicz, M., Grabias, A., škorvánek, I., J. Appl. Phys. 83, 935 (1998).Google Scholar
12. Miglierini, M., Kopcewicz, M., Idzikowski, B., Horvdth, Z.E., Grabias, A., škorvánek, I., Dluzewski, P., Daróczi, Cs.S., J. Appl. Phys. 85, 1014 (1999).Google Scholar