Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T08:56:32.687Z Has data issue: false hasContentIssue false

Influence of synthesis route on the morphology of SrTiO3 particles

Published online by Cambridge University Press:  09 August 2013

Marina M. Leite
Affiliation:
Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, São Paulo – SP, Brazil, 05508-000.
Flavio M. Vichi
Affiliation:
Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes, 748, São Paulo – SP, Brazil, 05508-000.
Get access

Abstract

The cubic perovskite SrTiO3 is an important semiconductor oxide with a band gap of 3.2 eV. It has a wide variety of applications such as: dielectric materials, photoluminescent devices, and in photocatalysis. It is conventionally obtained by the classic solid state synthesis (SS), in which TiO2 and SrCO3 react for several hours at temperatures as high as 1200 °C. Besides the high energy demand, SS is not useful for the control of physical characteristics, such as particle size and morphology, which has become essential for some of its applications. It is known that many soft and green routes can produce SrTiO3. Among them, the hydrothermal (HT) and sol-precipitation (SP) methods, as well as the molten salt synthesis (MS) are interesting not only due to their low cost and energy use, but also because of the possibility of particle size and shape control. This study compares the size and morphology of the SrTiO3 particles obtained by these three synthetic pathways. Scanning electron microscopy (SEM) was used to compare particle size and morphology, and X-ray diffraction (XRD) was used to confirm the perovskite formation as well as to determine the Scherrer’s particle size.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kong, L. B.; Si, L.; Zhang, T. S.; Zhai, J. W.; Boey, F.; Ma, J. Prog. Mater. Sci. 2010, 55, 850.CrossRefGoogle Scholar
Wang, T. X.; Liu, S. Z.; Chen, J. Powder Technol. 2011, 205, 289.CrossRefGoogle Scholar
Jeon, J.-H. J. Eur. Ceram. Soc. 2004, 24, 1045.CrossRefGoogle Scholar
Wang, L.; Ferris, K.; Azad, S.; Engelhard, M.; Peden, C. J. Phys. Chem. B 2004, 108, 1646.CrossRefGoogle Scholar
Chang, C.; Ray, B.; Paul, D.; Demydov, D.; Klabunde, K. J. Mol. Catal. A: Chem. 2008, 281, 99.CrossRefGoogle Scholar
Sulaeman, U.; Yin, S.; Sato, T. Appl. Catal., B 2011, 102, 286.CrossRefGoogle Scholar
Fergus, J. W. Sens. Actuators, B 2007, 123, 1169.CrossRefGoogle Scholar
Jacobson, A. Chem. Mater. 2010, 22, 660.CrossRefGoogle Scholar
Kumoto, K.; Wang, Y.; Zhang, R.; Kosuga, A.; Funahashi, R. Ann. Rev. Mater. Res. 2010, 40, 363.CrossRefGoogle Scholar
Ruiz-Morales, J. C.; Marrero-López, D.; Canales-Vásquez, J.; Irvine, J. S. RSC Adv. 2011, 1, 1403.CrossRefGoogle Scholar
Yoon, K. H.; Oh, K. Y.; Yoon, S. O. Mater. Res. Bull. 1986, 21, 1429.CrossRefGoogle Scholar
Mao, Y.; Banerjee, S.; Wong, S. S. J. Am. Chem. Soc. 2003, 125, 15718.CrossRefGoogle Scholar
Rørvik, P. M.; Lyngdal, T; Sæterli, R.; Van Helvoort, A. T. J.; Holmestad, T. R.; Einarsrud, M. A. Inorg. Chem. 2008, 47, 3173.CrossRefGoogle Scholar
Zhu, Q. A.; Xu, J. G.; Xiang, S.; Chen, L. X.; Tan, Z. G. Mater. Lett. 2011, 65, 873.CrossRefGoogle Scholar
Liu, X.; Bai, H. Mater. Chem. Phys. 2011, 127, 21.CrossRefGoogle Scholar
Hayashi, Y.; Kimura, T.; Yamaguchi, T. J. Mater. Sci. 1986, 21, 757.CrossRefGoogle Scholar
Huang, K. C.; Huang, T. C; Hsieh, W. F. Inorg. Chem. 2009, 48, 9180.CrossRefGoogle Scholar
Mao, Y.; Park, T. J.; Zhang, F.; Zhou, H.; Wong, S. S. Small 2007, 3, 1122.CrossRefGoogle Scholar
Roeder, R. K.; Slamovich, E. B. J. Am. Ceram. Soc. 1999, 82, 1665.CrossRefGoogle Scholar
Tsumura, T.; Matsuoka, K.; Toyoda, M. J. Mater. Sci. Technol. 2010, 26, 33.CrossRefGoogle Scholar
Hotta, Y.; Tsunekawa, K.; Duran, C.; Sato, K.; Nagaoka, T.; Watari, K. J. Mater. Sci. Eng. A 2008, 475, 57.CrossRefGoogle Scholar
Wei, X.; Xu, G.; Ren, Z.; Wnag, Y.; Shen, G.; Han, G. J. Cryst. Growth 2008, 310, 4132.CrossRefGoogle Scholar
Fuentes, S.; Zárate, E.; Chávez, E.; Muñóz, P.; Díaz-Droguett, D. et al. . J. Mater. Sci. 2010, 45, 1448.CrossRefGoogle Scholar
Wang, Y.; Xu, G.; Yang, L. et al. . J.Cryst. Growth 2009, 311, 2519.CrossRefGoogle Scholar
Eckert, J. O. Jr.; Hung-Houston, C. C.; Gersten, B. L.; Lencka, M. M.; Riman, R. E. J. Am. Ceram. Soc. 1996, 79, 2929.CrossRefGoogle Scholar
Zhang, Z.; Zhao, L.; Wang, X.; Yang, J. J. Sol-Gel Sci. Technol. 2004, 32, 367.CrossRefGoogle Scholar
Zheng, H.; Liu, Z.; Meng, G.; Sørensen, O. T. J. Mater. Sci.: Mater. Electron. 2001, 12, 629.Google Scholar
Hung, K.-M.; Yang, W.-D.; Huang, C.-C. J. Eur. Ceram. Soc. 2003, 23, 1901.CrossRefGoogle Scholar
Calderone, V. R.; Testino, A.; Buscaglia, M. T., et al. . Chem. Mater. 2006, 18, 1627.CrossRefGoogle Scholar
Chen, Y.-F.; Lee, C.-Y.; Yeng, M.-Y.; Chiu, H.T. Mater. Chem. Phys. 2003, 81, 39.CrossRefGoogle Scholar
Papa, A.-L.; Millot, N.; Saviot, L.; Chassagnon, R.; Heintz, O. J. Phys. Chem. C 2009, 113, 12682.CrossRefGoogle Scholar
Sreekantan, S.; Wei, L. J. Alloys. Compd. 2010, 490, 436.CrossRefGoogle Scholar