Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T14:09:48.670Z Has data issue: false hasContentIssue false

Influence of Post Growth Annealing on the Optical Properties of Gallium Nitride Films Grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  28 May 2012

M. F. Al-Kuhaili
Affiliation:
Department of Physics, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
S. M. A. Durrani
Affiliation:
Department of Physics, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
Imran Bakhtiari
Affiliation:
Department of Physics, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
Get access

Abstract:

Gallium nitride thin films were grown by pulsed laser deposition. Subsequently, post-growth annealing of the samples was performed at 400, and 600 oC in the nitrogen atmosphere. Surface morphology of the as-grown and annealed samples was performed by atomic force microscopy, surface roughness of the films improved after annealing. Chemical analysis of the samples was performed using x-ray photon spectroscopy, stoichiometric Gallium nitride thin films were obtained for the samples annealed at 600 oC. Optical measurements of the samples were performed to investigate the effect of annealing on the band gap and optical constants the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1) Liu, L. and Edgar, J. H., Mater. Sci. Eng. R. 37, 61, 2002 Google Scholar
2) O’Leary, S. K., Foutz, B. E., Shur, M. S., and Eastman, L. F., J. Mater. Sci.: Mater. Electron. 17, 87 (2006)Google Scholar
3) Mishra, U. K., Shen, L., Kazior, T. E., and Wu, Y.-F., Proc. IEEE 96, 287, (2008)Google Scholar
4) Walker, D., Zhang, X., Saxler, A., Kung, P., and Razeghi, M., Appl. Phys. Lett. 70, 949 (1997)Google Scholar
5) Hersee, S. D., Ramer, J. C., and Malloy, K. J., MRS Bull. July, Vol. 22, 45 (1997)Google Scholar
6) Moustakas, T. D. and Molnar, R. J., J. Appl. Phys. 73, 448 (1993)Google Scholar
7) Walter, S. D., Luther, B. P., Waltemyer, D. L., Onneby, C., Mohney, S. E., Molnar, R. J., Appl. Phys. Lett. 70, 2156 (1997).Google Scholar
8) Xiao, H. D., Ma, H. L., Lin, Z. J., Ma, J., Zong, F. J., Zhang, X. J., Mat. Chem. Phys. 106, 5 (2007).Google Scholar
9) Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer, Eden Prairie, (1992).Google Scholar
10) Yang, Y. G., Ma, H. L., Xue, C. S., Zhuang, H. Z., Hao, X. T., Ma, J., Teng, S. Y., Appl. Surf. Sci. 193, 254 (2002)Google Scholar
11) Natsume, Y. and Sakata, H. Mat. Chem. Phys. 78, 170 (2002)Google Scholar
12) Zubrilov, A. S., Nikishin, S. A., Kipshidze, G. D., Kuryatkov, V. V., Temkin, H., Prokofyeva, T. I., Holtz, M., J. Appl. Phys. 91, (2002)Google Scholar
13) Knox-Davies, E. C., Shannon, J. M., Silva, S. R. P., J. Appl. Phys. 99, 073503 (2006).Google Scholar
14) Heavens, O. S., Optical Properties of Thin Solid Films (Dover, New York, (1991).Google Scholar
15) Manifacier, J. C., Gasiot, J. and Fillard, J. P., J. Phys. E 9, 1002 (1976)Google Scholar
16) Wemple, S. H. and Didomenico, M., Phys. Rev. B 3, 1338 (1971)Google Scholar
17) Ylilammi, M. and Ranta-aho, T., Thin Solid Films 232, 56 (1993)Google Scholar
18) Malitson, I H J. Opt. Soc. Am. 55, 1205 (1965)Google Scholar
19) Kawashima, T., Yoshikawa, H., Adachi, S., Fuke, S., Ohtsuka, K., J. Appl. Phys. 82, 3528 (1997).Google Scholar
20) Yu, G., Wang, G., Ishikawa, H., Umeno, M., Soga, T., Egawa, T., Watanabe, J., Jimbo, T., Appl. Phys. Lett. 70, 3209 (1997).Google Scholar
21) Biswas, A., Bhattacharyya, D., Sahoo, N. K., Yadav, B. S., Major, S. S., Srinivasa, R. S., J. Appl. Phys. 103, 083541 (2008)Google Scholar
22) Adachi, S., Optical constants of crystalline and amorphous semiconductors, Springer, p. 183 (1999)Google Scholar