Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:29:44.352Z Has data issue: false hasContentIssue false

The Influence of Ni on the Transport Properties of CoSb3

Published online by Cambridge University Press:  01 February 2011

Ctirad Uher
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, [email protected]
Jeffrey S. Dyck
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, [email protected]
Wei Chen
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, [email protected]
Gregory P. Meisner
Affiliation:
Materials and Processes Laboratory, GM R&D and Planning, Warren, MI 48090
Jihui Yanga
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109, [email protected] Materials and Processes Laboratory, GM R&D and Planning, Warren, MI 48090
Get access

Abstract

The effect of Ni doping on the Co site of the binary skutterudite CoSb3 is investigated. We measured resistivity, Hall effect, magnetoresistance, thermopower, thermal conductivity, and magnetization of a series of samples of the form Co1-xNixSb3 with x in the range x=0 to x=0.01. We find that Ni takes the tetravalent state Ni4+, assumes the d6 electronic configuration for the lower energy non-bonding orbitals, and gives an electron to the conduction band. Ni doping dramatically suppresses the thermal conductivity, changes the temperature dependence of the thermopower, and increases the carrier concentration. Low temperature anomalies in thermopower, Hall coefficient and magnetoresistance are found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uher, C., Semiconductors and Semimetals, ed. Tritt, T. M., submitted.Google Scholar
2. Nolas, G. S., Morelli, D. T., and Tritt, T. M., Ann. Rev. Mater. Sci. 29 (1999) 89.Google Scholar
3. Jeitschko, W. and Brown, D. J., Acta Crystallogr. B33 (1977) 3401.Google Scholar
4. Stetson, N. T., Kauzlarich, S. M., and Hope, H., J. Solid State Chem. 91 (1994) 140.Google Scholar
5. Sales, B. C., Chakoumakos, B. C., and Mandrus, D., Phys. Rev. B61 (2000) 2475.Google Scholar
6. Slack, G. A. in CRC Handbook of Thermoelectrics, ed. Rowe, D. M., Boca Raton, FL, CRC Press, p. 407 (1995).Google Scholar
7. Morelli, D. T., Caillat, T., Fleurial, J.-P., Borshchevsky, A., Vandersande, J., Chen, B., and Uher, C., Phys. Rev. B51 (1995) 9622.Google Scholar
8. Sharp, J. W., Jones, E. C., Williams, R. K., Martin, P. M., and Sales, B. C., J. Appl. Phys. 78 (1995) 1013.Google Scholar
9. Caillat, T., Borshchevsky, A., and Fleurial, J.-P., J. Appl. Phys. 80 (1996) 4442.Google Scholar
10. Mandrus, D., Migliori, A., Darling, T. W., Hundley, M. F., Peterson, E. J., and Thompson, J. D., Phys. Rev. B52 (1995) 4926.Google Scholar
11. Arushanov, E., Fess, K., Kaefer, W., Kloc, Ch., and Bucher, E., Phys. Rev. B56 (1997) 1911.Google Scholar
12. Anno, H., Hatada, K., Shimizu, H., Matsubara, K., Notohara, Y., Sakakibara, T., Tashiro, H., and Motoya, K., J. Appl. Phys. 83 (1998) 5270.Google Scholar
13. Dudkin, L. D. and Abrikosov, N. Kh., Zhurnal Neorganicheskoi Khimii, 2 (1957) 212.Google Scholar
14. Zobrina, B. N. and Dudkin, L. D., Sov. Phys.—Solid State 1 (1960) 1668.Google Scholar
15. Yang, J., Meisner, G. P., Morelli, D. T., and Uher, C., Phys. Rev. B—submitted.Google Scholar
16. Yang, J., Morelli, D. T., Meisner, G. P., and Uher, C., in Thermal Conductivity 25/ Thermal Expansion 13, ed. Uher, C. and Morelli, D. T., Technomic Publishing, Lancaster PA, pp. 130 (2000).Google Scholar
17. Katsuyama, S., Shichijo, Y., Ito, M., Majima, K., and Nagai, H., J. Appl. Phys. 84 (1998) 6708.Google Scholar
18. Stokes, K. L., Ehrlich, A. C., and Nolas, G. S., Mat. Res. Soc. Symp. Proc. 545 (1999) 339.Google Scholar
19. Anno, H., Matsubara, K., Notohara, Y., Sakakibara, T., and Tashiro, H., J. Appl. Phys. 86 (1999) 3780.Google Scholar
20. Uher, C., J. Appl. Phys. 62 (1987) 4636.Google Scholar
21. Singh, D. J. and Pickett, W. E., Phys. Rev. B50 (1994) 11235.Google Scholar
22. Sofo, J. O. and Mahan, G. D., Mat. Res. Soc. Symp. Proc. 545 (1999) 315.Google Scholar
23. Dudkin, L. D., Sov. Phys.—Solid State 2 (1960) 371.Google Scholar
24. Chen, B., Xu, J., Uher, C., Morelli, D. T., Meisner, G. P., Fleurial, J.-P., Caillat, T. and Borshchevsky, A., Phys. Rev. B55 (1997) 1476.Google Scholar
25. Goldsmid, H. J., Electronic Refrigeration, Pion Limited (1986).Google Scholar
26. Ziman, J. M., Electrons and Phonons, Oxford University Press (1960).Google Scholar