Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T08:46:35.064Z Has data issue: false hasContentIssue false

Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy

Published online by Cambridge University Press:  01 February 2011

Shuangwu Li
Affiliation:
[email protected], Queen Mary College, University of London, Materials, Mile End Road,, London, E1 4NS, United Kingdom, +44(0)20 7882 7879, +44(0)20 8981 9804
Wei Wang
Affiliation:
[email protected], Queen Mary College, University of London, Department of Materials, Mile End Road,, London, E1 4NS, United Kingdom
Asa H Barber
Affiliation:
[email protected], Queen Mary College, University of London, Department of Materials, Mile End Road,, London, E1 4NS, United Kingdom
Get access

Abstract

Fibrous materials are used in a variety of applications due to their relatively high surface area to volume as well as anisotropic behavior. Electrospinning is a popular fabrication method which produces polymer nanofibres with a potentially high molecular alignment. In this work we examine the surface free energy of electrospun polyvinyl-alcohol nanofibres and its relation to molecular ordering using scanning probe microscopy adhesion measurements. Comparisons are made with bulk polymer material to show that a high degree of molecular orientation is present at least at the surface of the polymer nanofibre. As a result, the surface free energy of electrospun polymer nanofibres is greater than that of a bulk polymer. This effect indicates that the electrospinning process is effective at polymer alignment over a variety of experimental parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zhao, P. C., Jiang, H. L., Pan, H., Zhu, K. J. and Chen, W. L., Journal of Biomedical Materials Research Part A, 83A, 372 (2007).Google Scholar
2 Tungprapa, S., Jangchud, I., and Supaphol, P., Polymer, 48, 5030 (2007).Google Scholar
3 Barhate, R. S., Loong, C. K., and Ramakrishna, S., Journal of Membrane Science, 283, 209 (2006).Google Scholar
4 Huang, Z. M., Zhang, Y. Z., Kotaki, M. and Ramakrishna, S., Compos. Sci. Technol, 63, 2223 (2003).Google Scholar
5 Ondarcuhu, T. and Joachim, C., Europhys Lett. 42, 215 (1998).Google Scholar
6 Martin, C., Chem Mater, 8, 1739 (1996).Google Scholar
7 Ma, P. X., and Zhang, R. Y., Journal of Biomedical Materials Research, 46, 60 (1999).Google Scholar
8 Whitesides, G. M., and Grzybowski, B., Science, 295, 2418 (2002).Google Scholar
9 Fong, H. and Reneker, D. H. eds.“Structure formation in polymeric fibersfl”, Electrospinning and formation of nano-fibers, ed. Salem, D. R.. (2000). Pp.225–46.Google Scholar
10 Deitzel, J. M., , J.M., Kleinmeyer, J. D., Hirvonen, J. K. and N. Tan, C. B., Polymer, 42, 18163 (2001).Google Scholar
11 Qin, X. H., Wan, Y. Q., He, J. H., Zhang, J., Yu, J. Y. and Wang, S. Y., Polymer, 45, 6409 (2004).Google Scholar
12 He, J. H. and Wane, Y. Q., Polymer, 45, 6731 (2004).Google Scholar
13 Shin, Y. M., Hohman, M. M., Brenner, M. P. and Rutledge, G. C., Polymer, 42, 9955 (2001).Google Scholar
14 Yarin, A. L., Koombhongse, S., and Reneker, D.H., Journal of Applied Physics, 90, 4836 (2001).Google Scholar
15 Yarin, A. L., Koombhongse, S. and Reneker, D. H., Journal of Applied Physics, 89, 3018 (2001).Google Scholar
16 Barber, A. H., Cohen, S. R., Eitan, A., Schadler, L. S. and Wagner, H. D., Advanced Materials, 18, 83 (2006).Google Scholar
17 Barber, A. H., Cohen, S. R., Koenig, S. and Wagner, H. D., Composite Science Technology, 64, 2283 (2004).Google Scholar
18 Barber, A. H., Zhao, Q., Wagner, H. D. and Baillie, C. A., Composite Science and Technology, 13-14, 1915 (2004).Google Scholar
19 Barber, A. H., Cohen, S. R. and Wagner, H.D., Phys. Rev. Lett., 92, 186103 (2004).Google Scholar
20 Barber, A. H., Cohen, S. R. and Wagner, H.D., Phys. Rev. B., 71, 115443 (2005).Google Scholar
21 Zhang, J. X., Stephen, E., Chen, X. Y., Jin, Z., Luk, S., Madden, C., Patel, N., and Roberts, C. J., Pharmaceutical Research, 23, 401 (2006).Google Scholar
22 Reneker, D. H., Yarin, A. L., Fong, H. and Koombhongse, S., Journal of Applied Physics, 87, 4531 (2000).Google Scholar
23 Sader, J. E., J. Appl. Phys., 84, 64 (1998).Google Scholar
24 Johnson, K. L., Kendall, K. and Roberts, A. D., Proc. R. Soc. London Ser. A 324, 301 (1971).Google Scholar
25 Zhang, J., Ebbens, S., Chen, X., Jin, Zheng., Luk, S., Madden, C., Patel, N. and Roberts, J., Pharmaceutical Research, 23, 401 (2006).Google Scholar
26 Chibowski, E. and Perea-Carpio, R., Adv. Colloid Interface Sci, 98, 245 (2002).Google Scholar
27 Gonzalez-Martin, M. L., Janczuk, B., Labajos-Broncano, L., Bruque, J. M., and Gonzalez-Garcia, C. M., J. Colloid Interface Sci, 240, 467 (2001).Google Scholar
28 Zisman, W. A., Adv. Chem. Ser., 43, 1 (1964).Google Scholar
29 Jaeger, R., Schonherr, H. and Vancso, G. J., Macromolecules, 29, 7634 (1996).Google Scholar
30 Bianco, A., Iardino, G., Manuelli, A., Bertarelli, C., and Zerbi, G., ChemPhysChem, 8, 510 (2007).Google Scholar