Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T00:27:26.264Z Has data issue: false hasContentIssue false

Influence of Hydrogen on Growth of Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

Maxim Belov
Affiliation:
[email protected], Kintech Lab Ltd, Moscow, Russian Federation
Andrey Knizhnik
Affiliation:
[email protected], Kintech Lab Ltd, Kurchatov Sq 1, Moscow, 123182, Russian Federation, +7 499 196 9992
Irina Lebedeva
Affiliation:
[email protected], Kintech Lab Ltd, Moscow, Russian Federation
Alexey Gavrikov
Affiliation:
[email protected], Kintech Lab Ltd, Moscow, Russian Federation
Boris Potapkin
Affiliation:
[email protected], Kintech Lab Ltd, Moscow, Russian Federation
Timothy Sommerer
Affiliation:
[email protected], GE Global Research, Niskayuna, New York, United States
Chris Eastman
Affiliation:
[email protected], GE Global Research, Niskayuna, New York, United States
Get access

Abstract

The influence of hydrogen on the growth of carbon nanostructures in thermal chemical vapor deposition is studied using density functional theory calculations. It is shown that hydrogen adatoms effectively bind to edges of graphitic structures on the Ni (111) surface. This is found to result in a significant decrease of the rate of carbon attachment to the growing graphitic structures. However, it is also demonstrated that the edges of graphitic structures which are attached to steps on the Ni surface should not be hydrogenated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, H., G, G. Cao, Wang, Z., Yang, Yu., Shi, Z. and Gu, Z., J. Phys. Chem. C 112, 12706 (2008).Google Scholar
2. Zhu, L., Xu, J., Xiao, F., Jiang, H., Hess, D. W. and Wong, C. P., Carbon 45, 344 (2007).Google Scholar
3. Kayastha, V., Yap, Y. K., Dimovski, S. and Gogotsi, Yu., Appl. Phys. Lett. 85, 3265 (2004).Google Scholar
4. Meshot, E. R., Plata, D. L., Tawfick, S., Zhang, Y., Verploegen, E. A. and Hart, A. J., ACS Nano 3, 2477 (2009).Google Scholar
5. Bengaard, H. S., Norskov, J. K., Sehested, J., Clausen, B. S., Nielsen, L. P., Molenbroek, A. M. and Rostrup-Nielsen, J. R., J. Catal. 209, 365 (2002).Google Scholar
6. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
7. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
8. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
9. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
10. Jonsson, H., Mills, J. and Jacobsen, K. W. in Classical and quantum dynamics in condensed phase simulations, edited by Berne, B. J., Cicotti, G., Coker, D. F. (Singapore: Word Scientific, 1998) pp. 385404.Google Scholar
11. Steinruck, H. P., Luger, M., Winkler, A. and Rendulic, K. D., Phys. Rev. B 32, 5032 (1985).Google Scholar
12. Russell, J. N. Jr, Chorkendorff, I., Lanzillotto, A. M., Alvey, M. D. and Yates, J. T. Jr., J. Chem. Phys. 85, 6186 (1986).Google Scholar
13. Shanabarger, M. R., Solid State Comm. 14, 1015 (1974).Google Scholar
14. Russell, J. N., Jr, Gates, S. M. and Yates, J. T. Jr., J. Chem. Phys. 85, 6792 (1986).Google Scholar
15. Winkler, A. and Rendulic, K. D.. Surf. Sci. 118, 19 (1982).Google Scholar
16. Christmann, K., Schober, O., Ertl, G. and Neumann, M. J., J. Chem. Phys. 60, 4528 (1974).Google Scholar
17. Whitten, J. L. and Yang, H., Surf. Sci. Rep. 24, 55 (1998).Google Scholar
18. Yang, H. and Whitten, J. L., J. Chem. Phys. 98, 5039 (1993).Google Scholar
19. Wang, R., Deng, H.-Q., Yuan, X.-J. and Hu, W.-Y., Front. Phys. China 2, 199 (2007).Google Scholar
20. Langmuir, I., J. Am. Chem. Soc. 38, 2221 (1916).Google Scholar
21. Shiga, M., Yamaguchi, M. and Kaburaki, H., Phys Rev B 68, 245402 (2003).Google Scholar